The Kidney

  • Leonard I. Kleinman


The primary function of the mammalian kidney is to maintain water and electrolyte homeostasis. The kidney carries out this function by selectively excreting or retaining water and solutes as the condition dictates. In the fetus, body water and electrolyte balance are maintained largely by the placenta, so that renal maturation in utero is geared primarily to prepare the kidney for its extrauterine role. As a result, the functional capabilities of the fetal kidney are much greater than its normal functional requirements. Indeed, fetuses without functioning kidneys often manifest no water and electrolyte abnormalities. The major responsibility for water and electrolyte homeostasis is suddenly thrust upon the perinatal kidney as soon as the infant is born. Yet, as we shall see in subsequent portions of this chapter, renal maturation does not suddenly accelerate after the infant is born. Indeed, renal anatomic maturation is essentially complete in the human at the time of birth.


Glomerular Filtration Rate Proximal Tubule Renal Blood Flow Newborn Infant Renal Vascular Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexander, D. P., and Nixon, D. A., 1961, The foetal kidney, Br. Med. Bull. 17:112.PubMedGoogle Scholar
  2. 2.
    Alexander, D. P., and Nixon, D. A., 1962, Plasma clearance of p-aminohippuric acid by the kidneys of foetal, neonatal and adult sheep, Nature (London) 194:483.CrossRefGoogle Scholar
  3. 3.
    Alexander, D. P., and Nixon, D. A., 1963, Reabsorption of glucose, fructose and mesoinositol by the foetal and post-natal sheep kidney, J. Physiol. 167:480.PubMedGoogle Scholar
  4. 4.
    Alexander, D. P., Nixon, D. A., Widdas, W. F., and Wohlzogen, F. X., 1958, Renal function in the sheep fetus, J. Physiol. 140:14.PubMedGoogle Scholar
  5. 5.
    Ames, R. G., 1953, Urinary water excretion and neurohypophyseal function in full term and premature infants shortly after birth, Pediatrics 12:272.PubMedGoogle Scholar
  6. 6.
    Aperia, A., and Herin, P., 1975, Development of glomerular perfusion rate and nephron filtration rate in rats 17–60 days old, Amer. J. Physiol. 228:1319.PubMedGoogle Scholar
  7. 7.
    Aperia, A., Broberger, O., and Herin, P., 1974, Maturational changes in glomerular perfusion rate and glomerular filtration rate in lambs, Pediatr. Res. 8:758.PubMedCrossRefGoogle Scholar
  8. 8.
    Aperia, A., Broberger, O., Thodenius, K., and Zetterström, R., 1972, Renal response to an oral sodium load in newborn fullterm infants, Acta Paediatr. Scand. 61:670.PubMedCrossRefGoogle Scholar
  9. 8a.
    Aperia, A., Broberger, O., Thodenius, K., and Zetterström, R., 1974, Developmental study of the renal response to an oral salt load in preterm infants, Acta Paediatr. Scand. 63:517.PubMedCrossRefGoogle Scholar
  10. 9.
    Aperia, A., Broberger, O., Thodenius, K., and Zetterström, R., 1975, Development of renal control of salt and fluid homeostasis during the first year of life, Acta Paediatr. Scand. 64:393.PubMedCrossRefGoogle Scholar
  11. 9a.
    Aperia, A., Broberger, O., Thodenius, K., and Zetterström, R., 1975, Renal control of sodium and fluid balance in newborn infants during intravenous maintenance therapy, Acta Paediatr. Scand. 64:725.PubMedCrossRefGoogle Scholar
  12. 10.
    Arataki, M., 1926, Postnatal growth of kidney with special reference to number and size of glomeruli (albino rat), Amer. J. Anat. 36:399.CrossRefGoogle Scholar
  13. 11.
    Arturson, G., Groth, T., and Grotte, G., 1971, Human glomerular membrane porosity and filtration pressure: Dextran clearance data analyzed by theoretical models, Clin. Sci. 40:137.PubMedGoogle Scholar
  14. 12.
    Assali, N. S., Bekey, G. A., and Morrison, L., 1968, Fetal and neonatal circulation, in: Biology of Gestation (N. S. Assali, ed.), Vol. 2, p. 51, Academic Press, New York.Google Scholar
  15. 13.
    Baker, J. T., and Kleinman, L. I., 1973, Glucose reabsorption in the newborn dog kidney, Proc. Soc. Exp. Biol. Med. 142:716.PubMedGoogle Scholar
  16. 14.
    Baker, J. T., and Kleinman, L. I., 1974, Relation­ship between glucose and sodium excretion in the newborn dog, J. Physiol. 243:45.PubMedGoogle Scholar
  17. 15.
    Barger, A. C., 1966, Renal hemodynamic factors in congestive heart failure, Ann. NY. Acad. Sci. 139:276.PubMedCrossRefGoogle Scholar
  18. 16.
    Barger, A. C., and Herd, J. A., 1971, The renal circulation, N. Engl. J. Med. 284:482.PubMedCrossRefGoogle Scholar
  19. 17.
    Barnett, H. L., Vesterdal, J., McNamara, H., and Lauson, H. D., 1952, Renal water excretion in premature infants, J. Clin. Invest. 31:1069.PubMedCrossRefGoogle Scholar
  20. 18.
    Behrman, R. E., and Lees, M. H., 1971, Organ blood flows of the fetal, newborn and adult rhesus monkey, Biol. Neonate 18:330.PubMedCrossRefGoogle Scholar
  21. 19.
    Beitens, I. Z., Bayard, F., Levitsky, L., Ances, I. G., Kowarski, A., and Migeon, C. J., 1972, Plasma aldosterone concentration at delivery and during the newborn period, J. Clin. Invest. 51:386.CrossRefGoogle Scholar
  22. 20.
    Bernstine, R. L., 1970, A chronic renal model for the fetus, Lab. Anim. Sci. 20:949.PubMedGoogle Scholar
  23. 21.
    Blaine, E. H., Davis, J. O., and Prewitt, R. L., 1971, Evidence for a renal vascular receptor in control of renin secretion, Amer. J. Physiol. 220:1593.PubMedGoogle Scholar
  24. 22.
    Blantz, R. C., Kutz, M. H., Rector, F. C., and Seldin, D. W., 1971, Measurement of intrarenal blood flow. II. Effect of saline diuresis in the dog, Amer. J. Physiol. 220:1914.PubMedGoogle Scholar
  25. 23.
    Boss, J. M., Dlouha, H., Kraus, M., and Krecek, J., 1963, The structure of the kidney in relation to age and diet in white rats during the weaning period, J. Physiol. 168:196.PubMedGoogle Scholar
  26. 24.
    Bowman, F. J., and Foulkes, E. C., 1970, Antidiuretic hormone and urea permeability of col­lecting ducts, Amer. J. Physiol. 218:231.PubMedGoogle Scholar
  27. 25.
    Boylan, J. W., Colburn, E. P., and McCance, R. A., 1958, Renal function in the foetal and newborn guinea-pig, J. Physiol. 141:323.PubMedGoogle Scholar
  28. 26.
    Brodehl, J., Franken, A., and Gellissen, K., 1972, Maximal tubular reabsorption of glucose in infants and children, Acta Paediatr. Scand. 61:413.PubMedCrossRefGoogle Scholar
  29. 27.
    Buddingh, F., Parker, H. R., Ishizaki, G., and Tyler, W. S., 1971, Long term studies of the functional development of the fetal kidney in sheep, Amer. J. Vet. Res. 32:1993.PubMedGoogle Scholar
  30. 28.
    Calcagno, P. L., and Rubin, M. I., 1963, Renal extraction of PAH in infants and children, J. Clin. Invest. 43:1632.CrossRefGoogle Scholar
  31. 29.
    Carriere, S., Friborg, J., and Guay, J. P., 1971, Vasodilators, intrarenal blood flow and natriuresis in the dog, Amer. J. Physiol. 221:92.PubMedGoogle Scholar
  32. 30.
    Cohen, M. L., Smith, F. G., Jr., Mindell, R. S., and Vernier, R. L., 1969, A simple, reliable method of measuring glomerular filtration rate using single, low dose sodium iothalamate I131, Pediatrics 44:905.Google Scholar
  33. 31.
    Cort, J. H., and McCance, R. A., 1954, The renal response of puppies to an acidosis, J. Physiol. 124:358.PubMedGoogle Scholar
  34. 32.
    Crawford, J. D., Doyle, A. P., and Probst, J. H., 1959, Service of urea in renal water conservation, Amer. J. Physiol. 196:545.PubMedGoogle Scholar
  35. 33.
    Daniel, S. S., Bowe, E. T., Lallemard, R., Yeh, M. N., and James, L. S., 1975, Renal response to acid loading in the developing lamb fetus, intact in utero, J. Perinat. Med. 3:34.CrossRefGoogle Scholar
  36. 34.
    Deetjen, P., and Sonnenberg, H., 1965, Der tubuläre Transport von PAH. Microperfusions-versuche am Einzelnephron der Rattenniere in situ, Pfluegers Arch. 285:35.CrossRefGoogle Scholar
  37. 35.
    Dicker, S. E., 1970, Renal function in the newborn mammal, in : Mechanisms of Urine Concentration and Dilution in Mammals (S. E. Dicker, ed.), p. 133, The Williams & Wilkins Company, Baltimore.Google Scholar
  38. 36.
    Dodge, W. F., Travis, L. B., and Daeschner, L. W., 1967, Comparison of endogenous creatinine clearance with inulin clearance, Amer. J. Dis. Child. 113:638.Google Scholar
  39. 37.
    Edelmann, C. M., Jr., Barnett, H. L., and Stark, H., 1966, Effect of urea on concentration of urinary nonurea solute in premature infants, J. Appl. Physiol. 21:1021.PubMedGoogle Scholar
  40. 38.
    Edelmann, C. M., Jr., Barnett, H. L., and Troupkov, V., 1960, Renal concentrating mechanisms in newborn infants. Effect of dietary protein and water content, role of urea and responsiveness of antidiuretic hormone, J. Clin. Invest. 39:1062.PubMedCrossRefGoogle Scholar
  41. 39.
    Edelmann, C. M., Jr., Soriano, J. R., Boichis, H., Gruskin, A. B., and Acosta, M. I., 1967, Renal bicarbonate reabsorption and hydrogen ion excretion in normal infants, J. Clin. Invest. 46:1309.PubMedCrossRefGoogle Scholar
  42. 40.
    Falk, G., 1955, Maturation of renal function in adult rats, Amer. J. Physiol. 181:157.PubMedGoogle Scholar
  43. 41.
    Fetterman, G. H., Shuplock, N. A., Philipp, F. J., and Gregg, H. S., 1963, The postnatal growth and maturation of the glomeruli and proximal convolutions in the human kidney with a note on cortical nephrons: Studies by microdissection, in: Excerpta Medica International Congr. Ser. No. 78, Proceedings of the Second International Congress of Nephrology (August, 1963), p. 32.Google Scholar
  44. 42.
    Fetterman, G. H., Shuplock, N. A., Philipp, F. J., and Gregg, H. S., 1965, The growth and maturation of human glomeruli and proximal convolutions from term to adulthood, Pediatrics 35:601.PubMedGoogle Scholar
  45. 43.
    Gauer, D. H., and Tata, P. S., 1968, Vasopressin studies in the rat. IV. The vasopressin-water-equivalent and vasopressin clearance by the kidneys, Pfluegers Arch. 298:241.CrossRefGoogle Scholar
  46. 44.
    Goldstein, L., 1970, Renal ammonia and acid excretion in infant rats, Amer. J. Physiol. 218:1394.PubMedGoogle Scholar
  47. 45.
    Goldstein, L., 1971, Ammonia metabolism in kidneys of suckling rats, Amer. J. Physiol. 220:213.PubMedGoogle Scholar
  48. 46.
    Goldstein, L., and Harley-Dewitt, S., 1973, Renal gluconeogenesis and mitochondrial NAD +/NADH ratios in nursing and adult rats, Amer. J. Physiol. 224:752.PubMedGoogle Scholar
  49. 47.
    Granger, P., Rojo-Ortega, J. M., Casado Perez, S., Boucher, R., and Genest, J., 1971, The renin-angiotensin system in newborn dogs, Can. J. Physiol. Pharmacol. 49:134.PubMedCrossRefGoogle Scholar
  50. 48.
    Gresham, E. L., Rankin, J. H. G., Makowski, E. L., Meschia, G., and Battaglia, F. C., 1972, An evaluation of fetal function in a chronic sheep preparation, J. Clin. Invest. 51:149.PubMedCrossRefGoogle Scholar
  51. 49.
    Gruskin, A. B., Edelmann, C. M., Jr., and Yuan, S., 1970, Maturational changes in renal blood flow in piglets, Pediatr. Res. 4:7.PubMedCrossRefGoogle Scholar
  52. 50.
    Guignard, J. P., Torrado, A., DaChunha, O., and Gautier, E., 1975, Glomerular filtration rate in the first three weeks of life, J. Pediatr. 87:268.PubMedCrossRefGoogle Scholar
  53. 51.
    Hatemi, N., and McCance, R. A., 1961, Renal aspects of acid base control in the newly born. III. Response to acidifying drugs, Acta Paediatr. Scand. 50:603.CrossRefGoogle Scholar
  54. 52.
    Heller, H., and Lederis, K., 1959, Maturation of the hypothalamoneurohypophyseal system, J. Physiol. 147:299.PubMedGoogle Scholar
  55. 53.
    Heller, J., and Capek, K., 1965, Changes in body water compartments and inulin and PAH clearance in the dog during post-natal development, Physiol. Bohemoslov. 14:433.PubMedGoogle Scholar
  56. 54.
    Hirsch, G. H., and Hook, J. B., 1970, Maturation of renal organic acid transport: Substrate stimulation by penicillin and p-aminohippurate (PAH), J. Pharmacol. Exp. Ther. 171:103.PubMedGoogle Scholar
  57. 55.
    Hollenberg, N. K., Adams, D. F., Solomon, H. S., Abrams, H. L., and Merrill, J. P., 1972, What mediates the renal vascular response to a salt load in normal man, J. Appl. Physiol. 33:491.PubMedGoogle Scholar
  58. 56.
    Hook, J. B., Williamson, H. E., and Hirsch, G. H., 1970, Functional maturation of renal PAH transport in the dog, Can. J. Physiol. Pharmacol. 48:169.PubMedCrossRefGoogle Scholar
  59. 57.
    Horster, M., and Lewy, J. E., 1970, Filtration fraction and extraction of PAH during neonatal period in the rat, Amer. J. Physiol. 219:1061.PubMedGoogle Scholar
  60. 58.
    Horster, M., and Valtin, H., 1971, Postnatal development of renal function: Micropuncture and clearance studies in the dog, J. Clin. Invest. 50:779.PubMedCrossRefGoogle Scholar
  61. 59.
    Horster, M., Kemler, B. J., and Valtin, H., 1971, Intracortical distribution of number and volume of glomeruli during postnatal maturation in the dog, J. Clin. Invest. 50:796.PubMedCrossRefGoogle Scholar
  62. 60.
    Ikkos, D., and Strom, L., 1955, A comparison of the endogenous creatinine and inulin clearance in children, Acta Paediatr. 44:426.PubMedCrossRefGoogle Scholar
  63. 61.
    Janovsky, M., Martinek, J., and Stanincova, V., 1965, Antidiuretic activity in the plasma of human infants after a load of sodium chloride, Acta Paediatr. Scand. 54:543.PubMedCrossRefGoogle Scholar
  64. 62.
    Jose, P. A., Logan, A. G., Slotkoff, L. M., Lilienfield, L. S., Calcagno, P. L., and Eisner, G. M., 1971, Intrarenal blood flow distribution in canine puppies, Pediatr. Res. 5:335.PubMedCrossRefGoogle Scholar
  65. 63.
    Jose, P. A., Slotkoff, L. M., Lilienfield, L. S., Calcagno, P. L., and Eisner, G. M., 1974, Sensitivity of neonatal renal vasculature to epinephrine. Amer. J. Physiol. 226:796.PubMedGoogle Scholar
  66. 64.
    Kerpel-Fronius, E., Heim, T., and Sulyok, E., 1970, The development of the renal acidifying processes and their relation to acidosis in low-birth-weight infants, Biol. Neonate 15:156.PubMedCrossRefGoogle Scholar
  67. 65.
    Kim, J. K., Hirsch, G. H., and Hook, J. B., 1972, In vitro analysis of organic ion transport in renal cortex of the newborn rat, Pediatr. Res. 6:600.PubMedGoogle Scholar
  68. 66.
    Kleinman, L. I., 1975, Renal sodium reabsorption during saline loading and distal blockade in newborn dogs, Amer. J. Physiol. 228:1403.PubMedGoogle Scholar
  69. 67.
    Kleinman, L. I., and Lubbe, R. J., 1972, Factors affecting the maturation of glomerular filtration rate and renal plasma flow in the newborn dog, J. Physiol. 223:395.PubMedGoogle Scholar
  70. 68.
    Kleinman, L. I., and Lubbe, R. J., 1972, Factors affecting the maturation of renal PAH extraction in the newborn dog, J. Physiol. 223:411.PubMedGoogle Scholar
  71. 69.
    Kleinman, L. I., and Reuter, J. H., 1973, Maturation of glomerular blood flow distribution in the newborn dog, J. Physiol. 228:91.PubMedGoogle Scholar
  72. 70.
    Kleinman, L. I., and Reuter, J. H., 1974, Renal response of the newborn dog to a saline load: The role of intrarenal blood flow distribution, J. Physiol. 239:225.PubMedGoogle Scholar
  73. 71.
    Kotchen, T. A., Strickland, A. L., Rice, T. W., and Walters, D. R., 1972, A study of the reninangiotensin system in newborn infants, J. Pediatr. 80:938.PubMedCrossRefGoogle Scholar
  74. 72.
    Kurtzman, N. A., 1970, Regulation of renal bicarbonate reabsorption by extracellular volume, J. Clin. Invest. 49:586.PubMedCrossRefGoogle Scholar
  75. 73.
    Kurtzman, N. A., White, M. G., Rodgers, P. W., and Flynn, J. J., III, 1972, Relationship of sodium reabsorption and glomerular filtration rate to renal glucose reabsorption, J. Clin. Invest. 51:127.PubMedCrossRefGoogle Scholar
  76. 74.
    Loggie, J. M. H., Kleinman, L. I., and Van Maanen, E. F., 1975, Renal function and diuretic therapy in infants and children. Part I, J. Pediatr. 86:485.PubMedCrossRefGoogle Scholar
  77. 75.
    MacDonald, M. S., and Emery, J. L., 1959, The late intrauterine and postnatal development of human renal glomeruli, J. Anat. 93:331.PubMedGoogle Scholar
  78. 76.
    Maren, T. H., 1967, Carbonic anhydrase: Chemistry, physiology, and inhibition, Physiol. Rev. 47:595.PubMedGoogle Scholar
  79. 77.
    McCance, R. A., 1948, Renal function in early life, Physiol. Rev. 28:331.PubMedGoogle Scholar
  80. 78.
    McCance, R. A., and Hatemi, N., 1961, Control of acid base stability in the newly born, Lancet 1:293.CrossRefGoogle Scholar
  81. 79.
    McCance, R. A., and Widdowson, E. M., 1955, The response of puppies to a large dose of water, J. Physiol. 129:628.PubMedGoogle Scholar
  82. 80.
    McCance, R. A., and Widdowson, E. M., 1956, Metabolism, growth and renal function of piglets in the first days of life, J. Physiol. 133:373.PubMedGoogle Scholar
  83. 81.
    McCance, R. A., and Widdowson, E. M., 1957, Hypertonic expansion of the extracellular fluids, Acta Paediatr. Scand. 46:337.CrossRefGoogle Scholar
  84. 82.
    McCance, R. A., and Widdowson, E. M., 1960, The acid base relationships of the foetal fluids of the pig, J. Physiol. 151:484.PubMedGoogle Scholar
  85. 83.
    McCance, R. A., and Widdowson, E. M., 1960, Renal aspects of acid base control in the newly born. I. Natural development, Acta Paediatr. Scand. 49:409.CrossRefGoogle Scholar
  86. 84.
    McCance, R. A., Naylor, N. S. B., and Widdowson, E. M., 1954, The response of infants to a large dose of water, Arch. Dis. Child. 29:104.PubMedCrossRefGoogle Scholar
  87. 85.
    McCrory, W. W., 1972, Developmental Nephrology, Harvard University Press, Cambridge, Massachusetts.Google Scholar
  88. 86.
    Moore, E. S., DeLannoy, L. W., Paton, J. B., and Ocampo, M., 1972, Effect of Na2SO4 on urinary acidification in the fetal lamb, Amer. J. Physiol. 218:1394.Google Scholar
  89. 87.
    Moore, E. S., Fine, B. P., Satrasook, S. S., Vergel, Z. M., and Edelmann, C. M., Jr., 1972, Renal reabsorption of bicarbonate in puppies: Effect of extracellular volume contraction on the renal threshold for bicarbonate, Pediatr. Res. 6:859.PubMedCrossRefGoogle Scholar
  90. 88.
    Mott, J. C., 1966, Cardiovascular function in newborn mammals, Br. Med. Bull. 22:66.PubMedGoogle Scholar
  91. 89.
    Navar, L. G., 1970, Minimal preglomerular resistance and calculation of normal glomerular pressure, Amer. J. Physiol. 219:1658.PubMedGoogle Scholar
  92. 90.
    Oh, W., Oh, M. A., and Lind, J., 1966, Renal function and blood volume in the newborn infant related to placental transfusion, Acta Paediatr. Scand. 56:197.CrossRefGoogle Scholar
  93. 91.
    Olbing, H., Blaufox, M. D., Aschinberg, L. C., Silkalns, G. I., Bernstein, J., Spitzer, A., and Edelmann, C. M., Jr., 1973, Postnatal changes in renal glomerular blood flow distribution in puppies, J. Clin. Invest. 52:2885.PubMedCrossRefGoogle Scholar
  94. 92.
    Paton, J. B., Fisher, D. E., Delannoy, C. W., and Behrman, R. E., 1973, Umbilical blood flow, cardiac output and organ blood flow in the immature baboon fetus, Amer. J. Obstet. Gynecol. 117:560.Google Scholar
  95. 93.
    Pipkin, F. B., Kirkpatrick, S. M. L., Lumbers, E. R., and Mott, J. C., 1974, Renin and angiotensin-like levels in foetal newborn and adult sheep, J. Physiol. 241:575.Google Scholar
  96. 94.
    Pipkin, F. B., Mott, J. C., and Roberton, N. R. C. 1971, Angiotensin II-like activity in circulating arterial blood in immature and adult rabbits, J. Physiol 218:385.Google Scholar
  97. 95.
    Potter, D., Jarrah, A., Sakai, T., Harrah, J., and Holliday, M. A., 1969, Character of function and size in kidney during normal growth of rats, Pediatr. Res. 3:51.PubMedCrossRefGoogle Scholar
  98. 96.
    Potter, E. L., 1965, Development of the human glomerulus, Arch. Pathol. 80:241.PubMedGoogle Scholar
  99. 97.
    Purkerson, M. L., Lubowitz, H., White, R. W., and Bricker, N. S., 1969, On the influence of extracellular fluid volume expansion on bicarbonate reabsorption in the rat, J. Clin. Invest. 48:1754.PubMedCrossRefGoogle Scholar
  100. 98.
    Rahill, W. J., and Subramanian, S., 1973, The use of fetal animals to investigate renal development, Lab. Anim. Sci. 23:92.PubMedGoogle Scholar
  101. 99.
    Rakusan, K., and Marcinek, H., 1973, Postnatal development of the cardiac output distribution in rat, Biol. Neonat. 22:58.CrossRefGoogle Scholar
  102. 100.
    Rankin, J. H. G., Gresham, E. L., Battaglia, F. C., Makowski, E. L., and Meschia, G., 1972, Measurement of fetal renal inulin clearance in a chronic sheep preparation, J. Appl. Physiol. 32:129.PubMedGoogle Scholar
  103. 101.
    Rennick, B., Hamilton, B., and Evans, R., 1961, Development of renal tubular transports of TEA and PAH in the puppy and piglet, Amer. J. Physiol. 201:743.PubMedGoogle Scholar
  104. 102.
    Robillard, J. E., Kulvinskas, C., Sessions, C., Burmeister, L., and Smith, F. G., 1975, Matura-tional changes in the fetal glomerular filtration rate, Amer. J. Obstet. Gynecol. 122:601.Google Scholar
  105. 103.
    Rocha, A. S., and Kokko, J. P., 1974, Permeability of medullary nephron segments to urea and water: Effect of vasopressin, Kidney Int. 6:379.PubMedCrossRefGoogle Scholar
  106. 104.
    Rubin, M. I., Bruch, E., and Rapoport, M., 1949, Maturation of renal function in childhood: Clearance studies, J. Clin. Invest. 28:1144.CrossRefGoogle Scholar
  107. 105.
    Sakai, F., and Endov, H., 1971, Postnatal development of urea concentration in the newborn rabbit’s kidney, Jpn. J. Pharmacol. 21:677.PubMedCrossRefGoogle Scholar
  108. 106.
    Schultze, R. G., and Berger, H., 1973, The influence of GFR and saline expansion on T mG of the dog kidney, Kidney Int. 3:291.PubMedCrossRefGoogle Scholar
  109. 107.
    Segal, S., Rea, C., and Smith, I., 1971, Separate transport systems for sugars and amino acids in developing rat kidney cortex, Proc. Natl. Acad. Sci. U.S.A. 68:372.PubMedCrossRefGoogle Scholar
  110. 108.
    Siegel, S. R., Fisher, D. A., and Oh, W., 1974, Serum aldosterone concentrations related to sodium balance in the newborn infant, Pediatrics 53:410.PubMedGoogle Scholar
  111. 109.
    Smith, F. G., and Schwartz, A., 1970, Response of the intact lamb fetus to acidosis, Amer. J. Obstet. Gynecol. 106:52.Google Scholar
  112. 110.
    Smith, F. G., Jr., Adams, F. H., Borden, M., and Hilburn, J., 1966, Studies of renal function in the intact fetal lamb, Amer. J. Obstet. Gynecol. 46:240.Google Scholar
  113. 111.
    Solomon, S., 1974, Maximal gradients of Na + K across proximal tubules of kidneys of immature rats, Biol. Neonate 25:327.PubMedCrossRefGoogle Scholar
  114. 112.
    Solomon, S., 1974, Absolute rates of sodium and potassium reabsorption by proximal tubule of immature rats, Biol. Neonate 25:340.PubMedCrossRefGoogle Scholar
  115. 113.
    Spitzer, A., and Brandis, M., 1974, Functional and morphologic maturation of the superficial nephrons and relationship to total kidney function, J. Clin. Invest. 53:279.PubMedCrossRefGoogle Scholar
  116. 114.
    Spitzer, A., and Edelmann, C. M., Jr., 1971, Maturational changes in pressure gradients for glomerular filtration, Amer. J. Physiol. 221:1431.PubMedGoogle Scholar
  117. 115.
    Stanier, M. W., 1972, Development of intrarenal solute gradients in foetal and post-natal life, Pfluegers Arch. 336:263.CrossRefGoogle Scholar
  118. 116.
    Steichen, J. J., and Kleinman, L. I., 1975, Influence of dietary sodium intake on renal maturation in unanesthetized canine puppies, Proc. Soc. Exp. Biol. Med. 148:748.PubMedGoogle Scholar
  119. 117.
    Stein, J. H., Boonjarern, S., Wilson, C. B., and Ferris, T. F., 1973, Alterations in intrarenal blood flow distribution. Methods of measurement and relationship to sodium balance, Circ. Res. 32(Suppl.I):1.Google Scholar
  120. 118.
    Sulyok, E., Heim, T., Soltesz, G., and Jaszai, V., 1972, The influence of maturity on renal control of acidosis in newborn infants, Biol. Neonate 21:418.PubMedCrossRefGoogle Scholar
  121. 119.
    Svenningsen, N. W., 1974, Renal acid-base titration studies in infants with and without metabolic acidosis in the postnatal period, Pediatr. Res. 8:659.PubMedCrossRefGoogle Scholar
  122. 120.
    Svenningsen, N. W., and Lindquist, B., 1974, Postnatal development of renal hydrogen ion excretion capacity in relation to age and protein intake, Acta Paediatr. Scand. 63:721.PubMedCrossRefGoogle Scholar
  123. 121.
    Torelli, G., Milla, E., Kleinman, L. I., and Faelli, A., 1973, Effect of hypothermia on renal reabsorption, Pfluegers Arch. 342:219.CrossRefGoogle Scholar
  124. 122.
    Trimble, M. E., 1970, Renal response to solute loading in infant rats: Relation to anatomical development, Amer. J. Physiol. 219:1089.PubMedGoogle Scholar
  125. 123.
    Trimper, L. E., and Lumbers, E. R., 1972, The renin-angiotensin system in foetal lambs, Pfluegers Arch. 336:1.CrossRefGoogle Scholar
  126. 124.
    Tudvad, F., 1949, Sugar reabsorption in prematures and full-term babies, Scand. J. Clin. Lab. Invest. 1:281.CrossRefGoogle Scholar
  127. 125.
    Tudvad, F., and Vesterdal, J., 1953, The maximal tubular transfer of glucose and para-aminohippurate in premature infants, Acta Paediatr. Scand. 42:337.CrossRefGoogle Scholar
  128. 126.
    Tudvad, F., McNamara, H., and Barnett, H. L., 1954, Renal response of premature infants to administration of bicarbonate and potassium, Pediatrics 13:4.PubMedGoogle Scholar
  129. 127.
    Vander, A. J., and Miller, R., 1964, Control of renin secretion in the anesthetized dog, Amer. J. Physiol. 207:537.PubMedGoogle Scholar
  130. 128.
    Van Liew, J. B., Deetjen, P., and Boylan, J. W., 1967, Glucose reabsorption in the rat kidney, Pfluegers Arch. 295:232.CrossRefGoogle Scholar
  131. 129.
    Vaughn, D., Kirschbaum, T. H., Bersentes, T., Dilts, P. V., Jr., and Assali, N. S., 1968, Fetal and neonatal response to acid loading in the sheep, J. Appl. Physiol. 24:135.PubMedGoogle Scholar
  132. 130.
    Vogh, B., and Cassin, S., 1966, Stop flow analysis of renal function in newborn and maturing swine, Biol. Neonate 10:153.CrossRefGoogle Scholar
  133. 131.
    Weil, W. B., Jr., 1955, Evaluation of renal func­tion in infancy and childhood, Amer. J. Med. Sci. 229:678.PubMedCrossRefGoogle Scholar
  134. 132.
    Weldon, V. V., Kowarski, A., and Migeon, C. J., 1967, Aldosterone secretion rates in normal subjects from infancy to adulthood, Pediatrics 39:713.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Leonard I. Kleinman
    • 1
  1. 1.Departments of Pediatrics, Physiology, and Environmental HealthUniversity of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations