Electrolyte and Water Metabolism

  • Edmund Kerpel-Fronius


According to measurements during the last trimester of pregnancy, fluid retention is associated with a mean increase of 756 meq exchangeable sodium and of 171 meq potassium.(70) In this chapter, we are concerned with the fraction of retained water and electrolytes that accumulates during fetal development in the uterine cavity. The intrauterine water content in the primate may be divided into three compartments: fetal, placental, and amniotic fluid. Estimates of the water, sodium, and potassium content of these compartments are shown in Table I. If the data in Table I are compared with the total amount of electrolytes retained during pregnancy, it is obvious that the increase of sodium is divided equally between the intrauterine fluid pools and the expanding maternal extracellular fluid space, while most of the retained potassium is used for the formation of fetal tissues.


Amniotic Fluid Extracellular Fluid Maternal Plasma Water Metabolism Fetal Plasma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Acharya, P. T., and Payne, W. W., 1965, Blood chemistry of normal full-term infants in the first 48 hours of life, Arch. Dis. Child. 40:430–441.PubMedCrossRefGoogle Scholar
  2. 2.
    Adams, F. H., Fujiwara, T., and Rowshan, S., 1963, The nature and origin of the fluid in the fetal lamb lung, J. Pediatr. 63:881–888.PubMedCrossRefGoogle Scholar
  3. 3.
    Adams, F. H., Moss, A. J., and Fagan, L., 1963, The tracheal fluid in the fetal lamb, Biol. Neonate 5:151–158.CrossRefGoogle Scholar
  4. 4.
    Adolph, E. F., 1967, Ontogeny of volume regula­tions in embryonic extracellular fluids, Q. Rev. Biol. 42:1–38.CrossRefGoogle Scholar
  5. 5.
    Alexander, D. P., and Nixon, D. A., 1961, The fetal kidney, Br. Med. Bull. 17:112–117.PubMedGoogle Scholar
  6. 6.
    Alexander, D. P., Nixon, D. A., Widdas, W. F., and Wohlzogen, F. X., 1958, Renal function in the sheep foetus, J. Physiol. (London) 140:14–22.Google Scholar
  7. 7.
    Alstatt, L. B., 1965, Transplacental hyponatremia in the newborn infant, J. Pediatr. 66:985–988.CrossRefGoogle Scholar
  8. 8.
    American Academy of Pediatrics, 1957, Report Committee on Nutrition: Water requirement in relation to osmolar load as it applies to infant feeding, Pediatrics 19:339–341.Google Scholar
  9. 9.
    Ames, R. G., 1953, Urinary water excretion and neurohypophyseal function of full term and premature infants shortly after birth, Pediatrics 12:272–282.PubMedGoogle Scholar
  10. 10.
    Anast, C. S., 1964, Serum magnesium levels in the newborn, Pediatrics 33:969–974.PubMedGoogle Scholar
  11. 11.
    Aperia, A., Broberger, O., Thodenius, K., and Zetterström, R., 1974, Developmental study of the renal response to an oral salt load in preterm infants, Acta Paediatr. Scand. 63:517–524.PubMedCrossRefGoogle Scholar
  12. 12.
    Bain, A. D., and Scott, J. S., 1960, Renal agenesis and severe urinary tract dysplasia. A review of 50 cases with particular reference to the associated anomalies, Br. Med. J. 1:841–846.PubMedCrossRefGoogle Scholar
  13. 13.
    Battaglia, F., Prystowsky, H., Smisson, C., Hellegers, A., and Bruns, P., 1960, Fetal blood studies. XIII. The effect of administration of fluids intravenously to mothers upon the concentration of water and electrolytes in plasma of human fetuses, Pediatrics 25:2–10.PubMedGoogle Scholar
  14. 14.
    Bengtsson, B., Gennser, G., and Nilsson, E., 1970, Sodium, potassium and water content of human fetal and maternal plasma and red blood cells, Acta Paediatr. Scand. 59:142–148.CrossRefGoogle Scholar
  15. 15.
    Bruns, P. D., Linder, R. O., Drose, V. E., and Battaglia, F., 1963, The placental transfer of water from fetus to mother following the intravenous infusion of hypertonic mannitol to the maternal rabbit, Amer. J. Obstet. Gynecol. 86:160–167.Google Scholar
  16. 16.
    Bruns, P. D., Hellegers, A. E., Seeds, A. E., Jr., Behrman, R. E., and Battaglia, F. C., 1964, Effects of osmotic gradients across the primate placenta upon fetal and placental water contents, Pediatrics 34:407–411.PubMedGoogle Scholar
  17. 17.
    Camerer, W., 1900, Die chemische Zusammensetzung des Neugeborenen, Z. Biol. (Munich) xxi: 173–193.Google Scholar
  18. 18.
    Chambers, T. L., and Steel, A. E., 1975, Concentrated milk feeds and their relation to hyper-natraemic dehydration in infants, Arch. Dis. Child. 50:610–615.PubMedCrossRefGoogle Scholar
  19. 19.
    Cheek, D. B., 1954, Observations on total body chloride in children, Pediatrics 14:5–10.PubMedGoogle Scholar
  20. 20.
    Cheek, D. B., 1961, Extracellular volume: Its structure and measurement and the influence of age and disease, J. Pediatr. 58:103–125.PubMedCrossRefGoogle Scholar
  21. 21.
    Cheek, D. B., Maddison, T. G., Malinek, M., and Coldbeck, J. H., 1961, Further observations on the corrected bromide space of the neonate and investigation of water and electrolyte status in infants born of diabetic mothers, Pediatrics 21:861–869.Google Scholar
  22. 22.
    Clapp, W. M., Butterfield, L. J., and O’Brien, D., 1962, Body water compartments in the premature infant with special reference to the effects of the respiratory distress syndrome and of maternal diabetes and toxemia, Pediatrics 29:883–889.Google Scholar
  23. 23.
    Corsa, L., Jr., Gribetz, D., Cook, C. D., and Talbot, N. B., 1956, Total body exchangeable water, sodium, potassium in “hospital normal” infants and children, Pediatrics 17:184–191.PubMedGoogle Scholar
  24. 24.
    Corsa, L., Jr., Olnay, J. M., Steenburg, R. N., Ball, M. R., and Moore, I. D., 1950, The measurement of exchangeable potassium in man by isotope dilution, J. Clin. Invest. 29:1280–1295.PubMedCrossRefGoogle Scholar
  25. 25.
    Crawford, J. S., 1965, Maternal and cord blood at delivery. IV. Glucose, sodium, potassium, calcium and chloride. Biol. Neonate 8:222–237.CrossRefGoogle Scholar
  26. 26.
    Dancis, J., and Springer, D., 1970, Fetal homeostasis in maternal malnutrition: Potassium and sodium deficiency, Pediatr. Res. 4:345–351.PubMedCrossRefGoogle Scholar
  27. 27.
    Dancis, J., Springer, D., and Cohlen, S. Q., 1971, Fetal homeostasis in maternal malnutrition. II. Magnesium deprivation, Pediatr. Res. 5:131–136.CrossRefGoogle Scholar
  28. 28.
    Davies, J. S., Widdowson, E. M., and McCance, R. A., 1964, The intake of milk and the retention of its constituents while the newborn rabbit doubles its weight, Br. J. Nutr. 18:385–392.PubMedCrossRefGoogle Scholar
  29. 29.
    Davis, J. A., Harvey, D. R., and Stevens, J. F., 1966, Osmolality as a measure of dehydration in the neonatal period, Arch. Dis. Child. 41:448–450.PubMedCrossRefGoogle Scholar
  30. 30.
    De Rudder, B., 1928, Die Perspiratio insensibilis beim Säugling. II. Ihre Abhängigkeit von der Calorienzufuhr, Z. Kinderheilkd. 46:384–390.CrossRefGoogle Scholar
  31. 31.
    Dunning, M. F., Steele, J. M., and Bergen, A. Y., 1951, The measurement of total body chloride, Proc. Soc. Exp. Biol. Med. 77:854–858.PubMedGoogle Scholar
  32. 32.
    Economou-Mavrou, C., and McCance, R. A., 1958, Calcium, magnesium and phosphorus in foetal tissues, Biochem. J. 68:573–580.PubMedGoogle Scholar
  33. 33.
    Edelman, C. M., Jr., and Barnett, H. L., 1960, Role of the kidney in water metabolism in young infants, J. Pediatr. 56:154–179.CrossRefGoogle Scholar
  34. 34.
    Fink, C. W., and Cheek, D. B., 1960, The corrected bromide space (extracellular volume) in the newborn, Pediatrics 26:397–401.PubMedGoogle Scholar
  35. 35.
    Fisher, D. A., et al., 1963, Control of water balance in the newborn, Amer. J. Dis. Child. 106:137–146.PubMedGoogle Scholar
  36. 36.
    Fleishaker, G. H., Gesink, O. J., and McCrory, W. W., 1960, Effect of age on distribution of urea and electrolyte in kidneys of young rabbits, Amer. J. Dis. Child. 100:558.Google Scholar
  37. 37.
    Forbes, G. B., 1962, Methods for determining composition of the human body: With a note on the effect of diet on body composition, Pediatrics 29:477–494.PubMedGoogle Scholar
  38. 38.
    Forbes, G. B., and Lewis, A. M., 1956, Total sodium, potassium and chloride in adult man, J. Clin. Invest. 35:596–600.PubMedCrossRefGoogle Scholar
  39. 39.
    Forbes, G. B., Mizner, G. L., and Lewis, A., 1957, Effect of age on radiosodium exchange in bone (rat), Amer. J. Physiol 190:152–156.PubMedGoogle Scholar
  40. 40.
    Frhs-Hansen, B., 1961, Body water compartments in children: Changes during growth and related changes in body composition, Pediatrics 28:169–181.Google Scholar
  41. 41.
    Frhs-Hansen, B., 1971, Body composition during growth. In vivo measurements and biochemical data correlated to differential anatomical growth, Pediatrics 47:264–274.Google Scholar
  42. 42.
    Gamble, J. L., et al., 1951, Effects of large loads of electrolytes, Pediatrics 7:305–320.PubMedGoogle Scholar
  43. 43.
    Gautier, E., 1964, Neonatal hyperosmolarity, an instance of unresponsiveness to antidiuretic hormone, in : The Adaptation of the Newborn Infant to Extrauterine Life (J. H. P. Jonxis, H. K. A. Visser, and J. A. Troelstra, eds.), pp. 83–94, H. E. Stenfert Kroese, Leiden, South Holland.Google Scholar
  44. 44.
    Gillibrand, P. N., 1969, Changes in the electrolyte, urea and osmolality of the amniotic fluid with advancing pregnancy, J. Obstet. Gynecol. Br. Commonw. 76:898–905.CrossRefGoogle Scholar
  45. 45.
    Graham, B. D., et al., 1951, Development of neonatal electrolyte homeostasis, Pediatrics 8:68–78.PubMedGoogle Scholar
  46. 46.
    Hansen, J. D. L., and Smith, C. A., 1953, Effects of withholding fluid intake in immediate postnatal period, Pediatrics 12:99–113.PubMedGoogle Scholar
  47. 47.
    Hatemi, N., and McCance, R. A., 1961, Renal aspects of acid-base control in the newly born. III. Response to acidifying drugs, Acta Paediatr. Scand. 50:603–616.CrossRefGoogle Scholar
  48. 48.
    Heller, H., and Lederis, K., 1959, Maturation of the hypothalamoneurohypophysial system, J. Physiol. (London) 147:299–314.Google Scholar
  49. 49.
    Hill, J., and Rahimtulla, K. A., 1965, Heat balance and the metabolic rate of newborn babies in relation to environmental temperature ; and the effect of age and of weight on basal metabolic rate, J. Physiol. (London) 180:239–265.Google Scholar
  50. 50.
    Hooper, J. M. D., Evans, I. W. Y., and Stapleton, T., 1954, Resting pulmonary water loss in the newborn infant, Pediatrics 13:206–210.PubMedGoogle Scholar
  51. 51.
    Hungerland, H., 1954, Wasserhaushalt, in: Biologische Daten für den Kinderarzt, 2nd Ed. (J. Brock, ed.), pp. 480–542, Springer-Verlag, Berlin.Google Scholar
  52. 52.
    Ilter, O., Ezer, G., Hatemi, N., and Tümay, S. B., 1973, Le magnesium sérique au cours des ictères du nouveau-né, Pediatrie 28:297–301.PubMedGoogle Scholar
  53. 53.
    Iob, V., and Swanson, W. W., 1934, Mineral growth of the human fetus, Amer. J. Dis. Child. 47:302–306.Google Scholar
  54. 54.
    Jelinek, J., 1961, Changes in water and electrolyte distribution in the body of rats during development, in: The Development of Homeostasis, pp. 267–278, Publishing House of the Czechoslovak Academy of Sciences, Prague.Google Scholar
  55. 55.
    Jukarainen, E., 1972, Plasma magnesium in the newborn, Acta Paediatr. Scand. 61:489, 490.Google Scholar
  56. 56.
    Keitel, H. G., 1959, The concentration of potassium in the plasma, Amer. J. Dis. Child. 97:583–590.Google Scholar
  57. 57.
    Kerpel-Fronius, E., 1937, Über die Besonderheiten der Salz- und Wasserverteilung im Säuglingskörper, Z. Kinderheilkd. 58:726–738.CrossRefGoogle Scholar
  58. 58.
    Kerpel-Fronius, E., 1958, Clinical consequences of the water and electrolyte metabolism peculiar to infancy, in: Ciba Found. Coll. on Aging Vol. 4 (G. E. W. Wolstenholme and M. O’Connor, eds.), Churchill, London.Google Scholar
  59. 59.
    Kerpel-Fronius, E., 1959, Pathologie und Klinik des Salz- und Wasserhaushaltes, Publishing House, Hungarian Academy of Sciences, Budapest.Google Scholar
  60. 60.
    Kerpel-Fronius, E., and Helm, T., 1964, Efficiency of respiratory compensation for metabolic acidosis in premature infants, Biol. Neonate 7:203–213.CrossRefGoogle Scholar
  61. 61.
    Kerpel-Fronius, E., Heim, T., and Sulyok, E., 1970, The development of the renal acidifying processes and their relation to acidosis in low-birth-weight infants, Biol. Neonate 15:267–278.Google Scholar
  62. 62.
    Kerpel-Fronius, E., Nagy, L., and Magyarka, B., 1964, Volume and composition of fluid compartments in peripheral and cardiac muscles of animals born at different stages of maturity, Biol. Neonate 6:177–196.CrossRefGoogle Scholar
  63. 63.
    Kildeberg, P., 1964, Disturbances of hydrogen ion balance occurring in premature infants. II. Late metabolic acidosis, Acta, Paediatr. Scand. 53:517–526.CrossRefGoogle Scholar
  64. 64.
    Kildeberg, P., 1968, Clinical Acid-Base Physiology. Studies in Neonates, Infants, and Young Children, Munksgaard, Copenhagen.Google Scholar
  65. 65.
    Engel, K., and Winters, R. W., 1969, Balance of net acid in growing infants, Acta Paediatr. Scand. 58:321–329.PubMedCrossRefGoogle Scholar
  66. 66.
    Kubli, F., 1966, Fetale Gefahrenzustände und ihre Diagnose, Georg Thieme, Stuttgart.Google Scholar
  67. 67.
    Levine, S. Z., Kelly, M., and Wilson, J. R., 1930, Insensible perspiration in infancy and childhood. II. Proposed Standards for infants, Amer. J. Dis. Child. 39:917–929.Google Scholar
  68. 68.
    Lind, T., Kendall, A., and Hytten, F. E., 1972, The role of the fetus in the formation of amniotic fluid, J. Obstet. Gynecol. Br. Commonw. 79:289–298.CrossRefGoogle Scholar
  69. 69.
    Little, J. A., Brodszky, W. A., and Greathouse, R., 1955, The insensible weight loss of newborns and of older infants, Amer. J. Dis. Child. 90:630, 631.Google Scholar
  70. 70.
    MacGillivray, I., and Buchanan, T. J., 1958, Total exchangeable sodium and potassium in nonpregnant women and in normal and preeclamptic pregnancy, Lancet 2:1090–1093.PubMedCrossRefGoogle Scholar
  71. 71.
    Martinek, J., Janovsky, M. and Stanincova, V., 1963, Concentration mechanism in young infants, Excerpta Med. Int. Congr. Ser. No. 78, pp. 647–652.Google Scholar
  72. 72.
    McCance, R. A., 1961, Mineral metabolism of the fetus and the newborn, Br. Med. Bull. 17:132–136.Google Scholar
  73. 73.
    McCance, R. A., and Widdowson, E. M., 1957, Hypertonic expansion of the extracellular fluids, Acta Paediatr. Scand. 46:337–353.CrossRefGoogle Scholar
  74. 74.
    McCance, R. A., and Widdowson, E. M., 1960, Renal aspects of acid-base control in the newly born. I. Natural development, Acta Paediatr. Scand. 49:409–414.CrossRefGoogle Scholar
  75. 75.
    McCance, R. A., and Widdowson, E. M., 1963, The effect of administering sodium chloride, sodium bicarbonate, and potassium bicarbonate to newly-born piglets, J. Physiol. (London) 165:569–574.Google Scholar
  76. 76.
    Mauer, S. M., Dobrin, R. S., and Vernier, R. L., 1974, Unilateral and bilateral renal agenesis in monoamniotic twins, J. Pediatr. 84:236–238.PubMedCrossRefGoogle Scholar
  77. 77.
    Meschia, G. F. C., Battaglia, F., and Barron, D. H., 1957, A comparison of the freezing points of fetal and maternal plasmas of sheep and goat, Q. J. Exp. Physiol. 42:163–170.Google Scholar
  78. 78.
    Moya, F., Apgar, V., St. James, L., and Berrien, C., 1960, Hydramnios and congenital anomalies, J. Amer. Med. Assoc. 173:1552–1556.CrossRefGoogle Scholar
  79. 79.
    Nicolopoulos, D. A., and Smith, C. A., 1961, Metabolic aspects of idiopathic respiratory distress (hyaline membrane syndrome) in newborn infants, Pediatrics 28:206–222.PubMedGoogle Scholar
  80. 80.
    O’Brien, D., Hansen, J. D. L., and Smith, C. A., 1954, Effect of supersaturated atmospheres on insensible water loss in the newborn infant, Pediatrics 13:126–132.PubMedGoogle Scholar
  81. 81.
    Oliver, F. K., Jr., Dennis, J. A., and Bates, G. D., 1961, Serial blood-gas tensions and acid-base balance during the first hour of life in human infants, Acta Paediatr. Scand. 50:346–360.CrossRefGoogle Scholar
  82. 82.
    Parker, H. W., Olesen, K. H., McMurrey, J., and Friis-Hansen, B., 1958, Body water compartments throughout the life span, in: CIBA Foundation Colloquia on Aging (G. E. W. Wolstenholme and U. O’Connor, eds.), Vol. 4, Churchill, London.Google Scholar
  83. 83.
    Peonides, A., Levin, B., and Young, W. F., 1965, The renal excretion of hydrogen ions in infants and children, Arch. Dis. Child. 40:33–39.PubMedCrossRefGoogle Scholar
  84. 84.
    Perheentupa, J., Holmberg, C., and Laumialen, K., 1974, Congenital chloride diarrhea. I. Clinical experience with 17 cases, Acta Paediatr. Scand. 63:665, 666.Google Scholar
  85. 85.
    Phillips, G. D., and Sundaram, S. K., 1966, Sodium depletion of pregnant ewes and its effect on foetuses and foetal fluids, J. Physiol. (London) 184:889–897.Google Scholar
  86. 86.
    Pincus, J. G., Gittleman, I. F., Saito, M., and Sobel, A. E., 1956, A study of the plasma values of sodium, potassium, chloride, CO2-tension, sugar, urea, the protein base-binding power, pH and hematocrit in prematures on the first day of life, Pediatrics 18:39–49.PubMedGoogle Scholar
  87. 87.
    Plentl, A. A., 1959, The dynamics of amniotic fluid, Ann. N. Y. Acad. Sci. 75:746–761.PubMedCrossRefGoogle Scholar
  88. 88.
    Ranlow, P., and Siggaard-Andersen, O., 1965, Late metabolic acidosis in premature infants, Acta Paediatr. Scand. 54:531–540.CrossRefGoogle Scholar
  89. 89.
    Ruben, B. L., Calcagno, P. L., Rubin, M. I., and Weintraub, D. H., 1956, Renal defense response to induced acidosis in premature infants: Ammonia production and titratable acid excretion, Amer. J. Dis. Child. 92:513.Google Scholar
  90. 90.
    Saling, E., 1966, Das Kind in der Geburtshilfe, Georg Thieme, Stuttgart.Google Scholar
  91. 91.
    Schain, R. J., and O’Brien, K. O., 1957, Longitudinal studies of acid-base status in infants with low birth weight, J. Pediatr. 70:885–890.Google Scholar
  92. 92.
    Scopes, J. W., 1966, Metabolic rate and temperature in the human baby, Br. Med. Bull. 22:88–91.PubMedGoogle Scholar
  93. 93.
    Scott, J. S., and Wilson, L. K., 1957, Hydramnios as an early sign of oesophageal atresia, Lancet 2:569–572.CrossRefGoogle Scholar
  94. 94.
    Seeds, A. E., Jr., 1965, Water metabolism of the fetus, Amer. J. Obstet. Gynecol. 92:727–745.Google Scholar
  95. 95.
    Serrano, C. V., Talbert, L. M., and Welt, L. G., 1964, Potassium deficiency in the pregnant dog, J. Clin. Invest. 43:27–31.PubMedCrossRefGoogle Scholar
  96. 96.
    Svenningsen, N. W., and Lindquist, B., 1974, Postnatal development of renal hydrogen ion excretion capacity in relation to age and protein intake, Acta Paediatr. Scand. 63:721–731.PubMedCrossRefGoogle Scholar
  97. 97.
    Strauss, J., 1960, Urinary concentration in newborn premature infants, Amer. J. Dis. Child. 100:635.Google Scholar
  98. 98.
    Strauss, J., Adamsons, K., Jr., and James, L. S., 1965, Renal function of normal full-term infants in the first hours of extrauterine life. I. Infants delivered naturally and given a placental transfusion, Amer. J. Obstet. Gynecol. 91:286–290.Google Scholar
  99. 99.
    Talbot, N. B., and Richie, R., 1958, The effect of age on the body’s tolerance for fasting, thirsting and for overloading with water and certain electrolytes, in: CIBA Foundation Colloquia on Aging (G. E. W. Wolstenholme and U. O’Connor, eds.), Vol. 4, pp. 139–149, Churchill, London.Google Scholar
  100. 100.
    Tsang, R. C., 1972, Neonatal magnesium disturbances, Amer. J. Dis. Child. 124:282–293.PubMedGoogle Scholar
  101. 101.
    Visser, H. K. A., Degenhart, H. J., Cost, W. S., and Croughs, W., 1964, Adrenocortical control of renal sodium and potassium excretion in the newborn period, in: Nutricia Symposium on The Adaptation of the Newborn Infant to Extra-uterine Life (J. H. P. Jonxis, H. K. A. Visser, and J. A. Troelstra, eds.), pp. 45–123, H. E. Stenfert Kroese, Leiden, South Holland.Google Scholar
  102. 102.
    Wallace, W. W., Weil, W. B., and Taylor, A., 1958, Effect of variable protein and mineral intake upon the body composition of the growing animal, in: Ciba Found. Colloq. on Aging (G. E. W. Wolstenholme and M. O’Connor, eds.), Vol. 4, Churchill, London.Google Scholar
  103. 103.
    Wang, J., Roufa, A., Moore, T. J., Towell, H. M. M., and Pierson, R. N., Jr., 1973, Body composition studies in the human fetus after intra-amniotic injection of hypertonic saline, Amer. J. Obstet. Gynecol. 117:57–63.Google Scholar
  104. 104.
    Weldon, V. V., Kowalski, A., and Migeon, C. J., 1967, Aldosterone secretion rates in normal subjects from infancy to adulthood, Pediatrics 39:715–723.Google Scholar
  105. 105.
    Westin, B., Kaiser, G. H., Lind, J., Nyberg, R., and Teger-Nilsson, A. C., 1959, Some constituents of umbilical venous blood of previable fetuses, Acta Paediatr. Scand. 48:609–613.Google Scholar
  106. 106.
    Widdowson, E. M., 1958, Discussion, in: CIBA Foundation Colloquia on Aging (G. E. W. Wolstenholme and M. O’Connor, eds.), Vol. 4, p. 136, Churchill, London.Google Scholar
  107. 107.
    Widdowson, E. M., and Dickerson, J. W. T., 1960, The effect of growth and function on the chemical composition of soft tissues, Biochem. J. 77:30–43.PubMedGoogle Scholar
  108. 108.
    Widdowson, E. M., and Dickerson, J. W. T., 1964, Chemical composition of the body, in: Mineral Metabolism (C. F. Connor and F. Bronner, eds.), Vol. 2, Part A, Academic Press, New York and London.Google Scholar
  109. 109.
    Widdowson, E. M., and McCance, R. A., 1956, The effect of development on the composition of the serum and extracellular fluid, Clin. Sci. 15:361–371.PubMedGoogle Scholar
  110. 110.
    Wladimiroff, J. W., and Campbell, S., 1974, Fetal urine production rates in normal and complicated pregnancies, Lancet 1:151–154.PubMedCrossRefGoogle Scholar
  111. 111.
    Wright, G. H., and Nixon, D. A., 1961, Absorption of amniotic fluid in the gut of foetal sheep, Nature (London) 190:816.CrossRefGoogle Scholar
  112. 112.
    Wu, P. Y. K., and Hodman, J. E., 1974, Insensible water loss in preterm infants : Changes with postnatal development and non-ionizing radiant energy, Pediatrics 54:704–712.PubMedGoogle Scholar
  113. 113.
    Yaffe, S. J., and Anders, T. F., 1960, Renal solute content in young rabbits, Amer. J. Dis. Child. 100:558–559.Google Scholar
  114. 114.
    Yllpö, A., 1916, Neugeborene, Hunger und Intoxicationsacidosis in ihren Beziehungen zueinander, Z. Kinderheilkd. 14:268.CrossRefGoogle Scholar
  115. 115.
    Zweymüller, E., and Preining, O., 1970, The insensible water loss of the newborn infant, Acta Paediatr. Scand. Suppl. 205:1–29.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Edmund Kerpel-Fronius
    • 1
  1. 1.Department of Pediatrics No. IIUniversity Medical SchoolBudapest IXHungary

Personalised recommendations