Hepatic Drug Metabolism

  • Ross C. de Belle
  • Roger Lester


Drugs represent a heterogeneous group of compounds acquired by an organism that usually require metabolic transformation before they can be eliminated. The main site of mammalian drug metabolism is the liver, where the parent drug is rendered more polar, thereby enhancing its biliary and renal excretory properties. The next section of this chapter will review mechanisms by which drugs are taken up, metabolized, and excreted by liver cells. Section 3 will describe how these mechanisms are operant in the fetus and neonate. Section 4 will outline clinicopharmacological aspects of abnormalities or immaturity of these mechanisms and briefly discuss modes of therapeutic manipulation.


Bile Acid Drug Metabolism Newborn Infant Placental Transfer Secondary Bile Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ackerman, E., Rane, A., and Ericsson, J. L. E., 1972, The liver microsomal monooxygenase system in the human fetus: Distribution in different centrifugal fractions, Clin. Pharmacol. Ther. 13:652.Google Scholar
  2. 2.
    Anton, A. H., and Solomon, H. M., 1973, Drug-protein binding, Ann. N. Y. Acad. Sci. 226.Google Scholar
  3. 3.
    Aranda, J. V., Macleod, S. M., Renton, K. W., and Eade, N. R., 1974, Hepatic microsomal drug oxidation and electron transport in newborn infants, J. Pediatr. 85:534.PubMedCrossRefGoogle Scholar
  4. 4.
    Arias, I. M., 1970, The pathogenesis of physiologic jaundice of the newborn: A re-evaluation, in: “Bilirubin Metabolism in the Newborn,” Birth Defects: Orig. Artic. Ser. 6:55.Google Scholar
  5. 5.
    Bongiovanni, A. M., 1965, Bile acid content of gallbladder of infants, children and adults, J. Clin. Endocrinol. Metab. 25:678.PubMedCrossRefGoogle Scholar
  6. 6.
    Brodie, B. B., 1971, Possible mechanisms of drug-induced tissue lesions, Chem.-Biol. Interact. 3:247.PubMedCrossRefGoogle Scholar
  7. 7.
    Carrier, G., Hume, A. S., Douglas, B. H., and Wiser, W. L., 1969, Disposition of barbiturates in maternal blood, fetal blood and amniotic fluid, Amer. J. Obstet. Gynecol. 105:1069.Google Scholar
  8. 8.
    Catz C., and Yaffe, S. J., 1968, Barbiturate enhancement of bilirubin conjugation and excretion in young and adult animals, Pediatr. Res. 2:361.PubMedCrossRefGoogle Scholar
  9. 9.
    Cohn, V. H., 1971, Transmembrane movement of drug molecules, in: Fundamentals of Drug Metabolism and Drug Disposition (B. N. La Du, H. G. Mandel, and E. L. Way, eds.), Williams and Wilkins Co., Baltimore.Google Scholar
  10. 10.
    Feuer, G., and Liscio, A., 1969, Origin of delayed development of drug metabolism in the newborn rat, Nature (London) 223:68.CrossRefGoogle Scholar
  11. 11.
    Finster, M., Mark, L. C., and Morishima, H. O., 1966, Plasma thiopental concentrations in the newborn following delivery under thiopental-nitrous oxide anesthesia, Amer. J. Obstet. Gynecol. 95:621.Google Scholar
  12. 12.
    Fleischner, G., and Arias, I. M., 1970, Recent advances in bilirubin formation, transport, metabolism and excretion, Amer. J. Med. 49:576.PubMedCrossRefGoogle Scholar
  13. 13.
    Fouts, J. R., 1973, Microsomal mixed-function oxidases in the fetal and newborn rabbit, in: Fetal Pharmacology (L. Boreus, ed.), Raven Press, New York.Google Scholar
  14. 14.
    Fouts, J. R., and Adamson, R. H., 1959, Drug metabolism in the newborn rabbit, Science 129:897.PubMedCrossRefGoogle Scholar
  15. 15.
    Gibson, J. E., and Becker, B. A., 1967, Demonstration of enhanced lethality of drugs in hypoexcretory animals, J. Pharm. Sci. 56:1503.PubMedCrossRefGoogle Scholar
  16. 16.
    Gillette, J. R., 1973, Overview of drug-protein binding, Ann. N. Y. Acad. Sci. 226:6.PubMedCrossRefGoogle Scholar
  17. 17.
    Gillette, J. R., 1973, Overview of drug-protein binding, Ann. N. Y. Acad. Sci. 226:11.CrossRefGoogle Scholar
  18. 18.
    Gillette, J. R., Davis, D. C., and Sasame, H. A., 1972, Cytochrome P450 and its role in drug metabolism, Annu. Rev. Pharmacol., 12:57–84.PubMedCrossRefGoogle Scholar
  19. 19.
    Ginsburg, J., 1971, Placental drug transfer, Annu. Rev. Pharmacol. 11:387–408.PubMedCrossRefGoogle Scholar
  20. 20.
    Goldstein, A., Aronow, L., and Kalman, S. M. (eds.), 1974, Principles of Drug Action: The Basis of Pharmacology, p. 159, John Wiley & Sons, New York.Google Scholar
  21. 21.
    Goldstein, A., Aronow, L., and Kalman, S. M. (eds.), 1974, Principles of Drug Action: The Basis of Pharmacology, p. 171, John Wiley & Sons, New York.Google Scholar
  22. 22.
    Goldstein, A., Aronow, L., and Kalman, S. M. (eds.), 1974, Principles of Drug Action: The Basis of Pharmacology, p. 159, John Wiley & Sons, New York.Google Scholar
  23. 23.
    Goldstein, A., Aronow, L., and Kalman, S. M. (eds.), 1974, Principles of Drug Action: The Basis of Pharmacology, p. 219, John Wiley & Sons, New York.Google Scholar
  24. 24.
    Goodman, S. L., and Gilman, A. (eds.), 1970, The Pharmacological Basis of Therapeutics, 4th Ed., MacMillan, New York.Google Scholar
  25. 25.
    Hart, L. G., Adamson, R. H., Dixon, R., and Fouts, J. R., 1962, Stimulation of hepatic microsomal drug metabolism in the newborn and fetal rabbit, J. Pharmacol. Exp. Ther. 137:103.PubMedGoogle Scholar
  26. 26.
    Idampaan-Heikkila, J. E., Jouppila, P. I., Paulakka, J. O., and Vorne, M. S., 1971, Placental transfer and fetal metabolism of diazepam in early human pregnancy, Amer. J. Obstet. Gynecol. 199:1011.Google Scholar
  27. 27.
    Jackson, B. T., and Edgall, R. H., 1950, The performance of complex fetal operations in utero without amniotic fluid loss or other disturbances of fetal-maternal relationships, Surgery 48:564.Google Scholar
  28. 28.
    Jackson, B. T., Smallwood, R. A., Piasecki, G. J., Brown, A. S., Rauschecker, H. F. J., and Lester, R., 1971, Fetal bile salt metabolism. I. The metabolism of sodium cholate-14C in the fetal dog, J. Clin. Invest. 50:1286.PubMedCrossRefGoogle Scholar
  29. 29.
    Klein, G. P., Chan, S. K., and Giroud, C. J. P., 1969, Urinary secretion of 17-hydroxy- and 17-deoxysteroids of the pregnene-4 series by the human newborn, J. Clin. Endocrinol. 29:1448.CrossRefGoogle Scholar
  30. 30.
    Klinger, W., Zwacka, G., and Ankermann, H., 1958, Untersuchungen zum Mechanismus der Enzyminduktion, Acta Biol. Med. Ger. 20:137.Google Scholar
  31. 31.
    Krasner, J., Giacoia, G. P., and Yaffe, S. J., 1973, Drug-protein binding in the newborn infant, Ann. N. Y. Acad. Sci. 226:101.PubMedCrossRefGoogle Scholar
  32. 32.
    Lane, A., Von Bahr, C., Orrenius, S., and Sjovquist, F., 1973, Drug metabolism in the human fetus, in: Fetal Pharmacology (L. Boreus, ed.), Raven Press, New York.Google Scholar
  33. 33.
    Leskes, A., Sickevitz, P., and Palade, G. E., 1971, Differentiation of endoplasmic reticulum in hepatocyte microsomes. IL Glucose-6-phosphatase, J. Cell. Biol. 49:288.PubMedCrossRefGoogle Scholar
  34. 34.
    Levi, A. J., Gatmaiten, Z., and Arias, I. M., 1969, The role of two cytoplasmic proteins (Y and Z) in the transfer of sulfobromophthalein (BSP) and bilirubin from plasma into the liver, J. Clin. Invest. 48:2156.PubMedCrossRefGoogle Scholar
  35. 35.
    Long, R. F., and Marks, J., 1969, The transfer of drugs across the placenta, Proc. R. Soc. Med. 62:318.PubMedGoogle Scholar
  36. 36.
    Miller, R. K., Ferm, V. H., and Mudge, G. H., 1972, Placental transfer and tissue distribution of iophenoxic acid in the hamster, Amer. J. Obstet. Gynecol. 114:259.Google Scholar
  37. 37.
    Mirkin, B. L., 1971, Diphenylhydantoin: Placental transport, fetal localization, neonatal metabolism and possible teratogenic effect, J. Pediatr. 78:329.PubMedCrossRefGoogle Scholar
  38. 38.
    Mirkin, B. L., 1974, Fetal pharmacology, in: Modern Perinatal Medicine (L. Gluck, ed.), Year Book Medical Publishers, Chicago.Google Scholar
  39. 39.
    Mitchell, J. R., and Jollows, D. J., 1975, Metabolic activation of drugs to toxic substances, Gastroenterology 68:392.PubMedGoogle Scholar
  40. 40.
    Morselli, P. L., Principe, N., Tognoni, G., Keall, E., Belvedere, G., Standen, S. M., and Sereni, F., 1973, Diazepam elimination in premature and full-term infants and children, J. Perinat. Med. 1:133.PubMedCrossRefGoogle Scholar
  41. 41.
    Older, P. O., and Harris, J. M., 1968, Placental transfer of tubocurarine, Br. J. Anaesthiol. 40:459.CrossRefGoogle Scholar
  42. 42.
    Pelkonen, O., Kaltilia, E. H., Larmi, T. K., and Karki, N. T., 1973, Comparison of activities of drug metabolizing enzymes in human fetal and adult livers, Clin. Pharmacol. Ther. 14:840.PubMedGoogle Scholar
  43. 43.
    Plaa, G. L., 1971, Biliary and other routes of excretion of drugs, in: Fundamentals of Drug Metabolism and Drug Disposition (B. N. La Du, H. G. Mandel, and E. L. Way, eds.), Chapt. 9, Williams and Wilkins, Baltimore.Google Scholar
  44. 44.
    Rane, A., and Ackerman, E., 1977, Metabolism of ethylmorphine and aniline in human fetal liver, Clin. Pharmacol. Ther., in press.Google Scholar
  45. 45.
    Schecter, P. J., and Ross, L. J., 1967, The distribution of thiopental-2-C14 in maternal and fetal tissues of the rat, J. Pharmacol. Exp. Ther. 158:164.Google Scholar
  46. 46.
    Sharp, A. L., Peller, J., Carey, J. B., and Krivit, W., 1971, Primary and secondary bile acids in meconium, Pediatr. Res. 5:274.CrossRefGoogle Scholar
  47. 47.
    Shoeman, D. W., Kauffman, R. E., Azarnoff, D., and Boulos, B. M., 1972, Placental transfer of diphenylhydantoin in the goat, Biochem. Pharmacol. 21:1237.PubMedCrossRefGoogle Scholar
  48. 48.
    Shnider, S. M., and Way, E. L., 1968, The kinetics of transfer of lidocaine (Xylocaine) across the human placenta, Anesthesiology 29:944.PubMedGoogle Scholar
  49. 49.
    Smallwood, R. A., Lester, R., Piasecki, G. J., Klein, P. D., Greco, R., and Jackson, B. T., 1972, Fetal bile salt metabolism. II. Hepatic excretion of endogenous bile salts and of a taurocholate load, J. Clin. Invest. 51:1388.PubMedCrossRefGoogle Scholar
  50. 50.
    Smith, R. L., 1971, Excretion of drugs in bile, in: Handbook of Experimental Pharmacology (B. B. Brodie and J. R. Gillette, eds.), Chapt. 19, Springer-Verlag, Berlin.Google Scholar
  51. 51.
    Somani, S. M., 1974, Binding of 14C-neostigmine and 14C-3-hydroxyphenyl-trimethyl ammonium to chondroitin sulfate, human serum albumin and liver subcellular fractions, Fed. Proc. Fed. Amer. Soc. Exp. Biol. 33:514.Google Scholar
  52. 52.
    Somani, S. M., and Anderson, J. H., 1975, Sequestration of neostigmine and metabolites by perfused rat liver, Drug Metab. Dispos. 3(4):275–282.PubMedGoogle Scholar
  53. 53.
    Thaler, M. M., Dallman, P. R., and Goodman, J., 1972, Phenobarbital-induced changes in NADPH-cytochrome C reductase and smooth endoplasmic reticulum in human liver, J. Pediatr. 70:302.Google Scholar
  54. 54.
    Tjalve, H., Hannsson, E., and Schmiterlow, C.G. , 1968, Passage of 14C-nicotine and its metabolites into mice foetuses and placentae, Acta Pharmacol. Toxicol. 26:339.Google Scholar
  55. 55.
    Trolle, D., 1968, Phenobarbital and neonatal icterus, Lancet 1:251.CrossRefGoogle Scholar
  56. 56.
    Vest, M. F., 1962, Conjugation of sulfobromophthalein in newborn infants and children, J. Clin. Invest. 41:1013.PubMedCrossRefGoogle Scholar
  57. 57.
    Villee, C. A., 1952, Metabolism of the placenta, Amer. J. Obstet. Gynecol. 74:1684.Google Scholar
  58. 58.
    Waddell, W. J., and Mirkin, B. L., 1971, Distribution of diphenylhydantoin C14 in fetal and maternal tissues of the pregnant mouse, Biochem. Pharmacol. 21:547.CrossRefGoogle Scholar
  59. 59.
    Watkins, J. B., Ingall, D., Klein, P. D., and Lester, R., 1973, Bile salt metabolism in the newborn: Measurement of pool-size and synthesis by stable isotope technique, N. Engl. J. Med. 288:431.PubMedCrossRefGoogle Scholar
  60. 60.
    Watkins, J. B., Szczepanik, P., Gould, J. B., Klein, P. D., and Lester, R., 1975, Bile salt metabolism in the human premature infant: Preliminary observations of pool-size and synthesis rate following prenatal administration of dexamethasone and phenobarbital, Gastroenterology 69:706.PubMedGoogle Scholar
  61. 61.
    West, J. R., Smith, H. W., and Chassis, H., 1948, Glomerular filtration rate, effective renal blood flow, and maximal tubular excretory capacity in infancy, J. Pediatr. 32:10.PubMedCrossRefGoogle Scholar
  62. 62.
    Wheeler, H. O., 1972, Secretion of bile acids by the liver and their role in the formation of hepatic bile, Arch. Intern. Med. 130:353.CrossRefGoogle Scholar
  63. 63.
    Wilson, J. T., 1970, Alteration of normal development of drug metabolism by injection of growth hormone, Nature (London) 225:861.CrossRefGoogle Scholar
  64. 64.
    Yaffe, S. J., and Juchau, M.R., 1974, Perinatal pharmacology, Annu. Rev. Pharmacol. 14:219.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Ross C. de Belle
    • 1
  • Roger Lester
    • 2
  1. 1.Montreal Children’s HospitalMcGill UniversityMontrealCanada
  2. 2.University of Pittsburgh School of MedicinePittsburghUSA

Personalised recommendations