Liver Enzymes

  • Uwe Stave


The metabolic activity of the liver is multifarious, and a discussion of perinatal changes in hepatic enzyme patterns embraces many areas of physiology and biochemistry. Most of the chapters in this Part III on metabolism and several chapters of the remaining parts of this volume deal with functions that proceed predominantly in the liver. Specific enzyme activities are discussed in connection with those different topics. In this chapter, an attempt will be made to present a survey of metabolic potentials in the perinatal liver, and to elucidate the developmental formation of hepatic enzymes. As much as it would be desirable to survey all liver enzymes, and preferably those of the human fetus and newborn, there are good ethical reasons for the restricted research on normal human tissues obtained in the perinatal period. The data that are available from human liver, however, demonstrate trends and principles very similar to those studied in subhuman mammals.


Perinatal Period Enzyme Protein Adult Level Rabbit Liver Phenylalanine Hydroxylase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Auerbach, V. H., and Waisman, H. A., 1959, Tryptophan peroxidase-oxidase, histidase, and transaminase activity in the liver of the developing rat, J. Biol. Chem. 234:304–306.PubMedGoogle Scholar
  2. 2.
    Auricchio, S., and Rigillo, N., 1960, Glucose-6-phosphatase activity of the human foetal liver, Biol. Neonate 2:146–148.CrossRefGoogle Scholar
  3. 3.
    Bagshaw, J. C., and Bond, B. H., 1974, Postnatal development of mouse liver: Increasing RNA polymerase activity and orotic acid incorporation, Differentiation 2:269–273.PubMedCrossRefGoogle Scholar
  4. 4.
    Barcroft, J., 1947, Researches on Pre-natal Life, Charles C. Thomas, Springfield, Illinois.Google Scholar
  5. 5.
    Becker, V., and Kosegarten, A., 1963, Die texturelle perinatale Leberreifung, Acta Hepato-Splenol.(Stuttgart) 10:145–153.Google Scholar
  6. 6.
    Blatt, W. F., Blatteis, C. M., and Mager, M., 1966, Tissue lactic dehydrogenase isoenzymes: Developmental pattern in the neonatal rat, Can. J. Biochem. 44:537–543.PubMedCrossRefGoogle Scholar
  7. 7.
    Brenneman, A. R., and Kaufman, S., 1965, Characteristics of the hepatic phenylalanine-hydroxy-lating system in the newborn rat, J. Biol. Chem. 240:3617–3622.PubMedGoogle Scholar
  8. 8.
    Bücher, T., 1962, Enzyme unter biologischem Aspekt, in: Erbliche Stoffwechselkrankheiten (F. Linneweh, ed.), pp. 125–141, Urban und Schwarzenberg, Munich.Google Scholar
  9. 9.
    Burch, H. B., Lowry, O. H., Kuhlman, A. M., Skerjance, J., Diamant, E. J., Lowry, S. R., and Von Dippe, P., 1963, Changes in patterns of enzymes of carbohydrate metabolism in the developing rat liver, J. Biol. Chem. 238:2267–2273.PubMedGoogle Scholar
  10. 10.
    Cahn, R. D., Kaplan, N. O., Levine, L., and Zwilling, E., 1962, Nature and development of lactic dehydrogenases, Science 136:962–969.PubMedCrossRefGoogle Scholar
  11. 11.
    Cartwright, E. C., Connellan, J. M., and Danks, D. M., 1973, Some properties of phenylalanine hydroxylase in human foetal liver, Aust. J. Exp. Biol. Med. Sci. 51:559–563.PubMedCrossRefGoogle Scholar
  12. 12.
    Chan, S. K., and Cohen, P. P., 1964, A comparative study of the effect of hydrocortisone injection on tyrosine transaminase activity of different vertebrates, Arch. Biochem. 104:335–337.PubMedCrossRefGoogle Scholar
  13. 13.
    Cuatrecasas, P., and Segal, S., 1965, Mammalian galactokinase, J. Biol. Chem. 240:2382–2388.PubMedGoogle Scholar
  14. 14.
    Dawkins, M. J. R., 1959, Respiratory enzymes in the liver of the newborn rat, Proc. R. Soc. Biol. 150:284–298.CrossRefGoogle Scholar
  15. 15.
    Dawkins, M. J. R., 1963, Glycogen synthesis and breakdown in fetal and newborn rat, Ann. N. Y. Acad. Sci. 111:203–211.PubMedCrossRefGoogle Scholar
  16. 16.
    Dawson, D. M., Goodfriend, T. L., and Kaplan, N. O., 1964, Lactic dehydrogenases: Functions of the two types, Science 143:929–933.PubMedCrossRefGoogle Scholar
  17. 17.
    Emery, J. L., 1963, Functional asymmetry of the liver, Ann. N. Y. Acad. Sci. 111:37–44.PubMedCrossRefGoogle Scholar
  18. 18.
    Enesco, M., and Leblond, C. P., 1962, Increase in cell number as a factor in the growth of the organs and tissues of the young male rat, J. Embryol. Exp. Morphol. 10:530–562.Google Scholar
  19. 19.
    Feigelson, P., and Greengard, O., 1962, Immunochemical evidence for increased titers of liver tryptophan pyrrolase during substrate and hormonal enzyme induction, J. Biol. Chem. 237:3714–3717.Google Scholar
  20. 20.
    Fine, I. H., Kaplan, N. O., and Kuftinec, D., 1963, Developmental changes of mammalian lactic dehydrogenase, Biochemistry 2:116–121.CrossRefGoogle Scholar
  21. 21.
    Fineberg, R. A., and Greenberg, D. M., 1955, Ferritin biosynthesis. II. Acceleration of synthesis by the administration of iron, J. Biol. Chem. 214:97–106.PubMedGoogle Scholar
  22. 22.
    Freedland, R. A., Krakowski, M. C., and Waisman, H. A., 1962, Effect of age, sex, and nutrition on liver phenylalanine hydroxylase activity in rats, Amer. J. Physiol. 202:145–148.PubMedGoogle Scholar
  23. 23.
    Friedman, P. A., and Kaufman, S., 1971, A study of the development of phenylalanine hydroxylase in fetuses of several mammalian species, Arch. Biochem. Biophys. 146:321–326.PubMedCrossRefGoogle Scholar
  24. 24.
    Girard, J. R., Caquet, D., Bal, D., and Guillet, I., 1973, Control of rat liver Phosphorylase, glucose-6-phosphatase, and phosphoenolpyruvate carboxy-kinase activities by insulin and glucagon during the perinatal period, Enzyme 15:272–285.PubMedGoogle Scholar
  25. 25.
    Goswami, M. N., Rosenberg, A. J., and Meury, F., 1973, A comparative analysis of the ontogenic development of rat liver sequential enzymes— tyrosine α-ketoglutarate aminotransferase, p-hydroxyphenylpyruvate hydroxylase, and homogentisate oxygenase, Dev. Biol. 30:129–136.PubMedCrossRefGoogle Scholar
  26. 26.
    Garn, S. M., Lewis, A. B., and Vicinus, J. H., 1963, Third molar polymorphism and its significance to dental genesis, J. Dent. Res. 42:1344–1363.PubMedCrossRefGoogle Scholar
  27. 27.
    Green, D. E., 1959, Electron transport and oxidative phosphorylation, Adv. Enzymol. 21:73–130.Google Scholar
  28. 28.
    Greengard, O., 1967, The quantitative regulation of specific proteins in animal tissues; words and facts, Enzymol. Biol. Clin. (Basel) 8:81–96.Google Scholar
  29. 29.
    Greengard, O., 1973, The developmental formation of enzymes in rat liver, in: Biochemical Aspects of Hormones (G. Litevack, ed.), pp. 53–87, Academic Press, New York.Google Scholar
  30. 30.
    Greengard, O., 1973, Effect of hormones on development of fetal enzymes, Clin. Pharmacol. Ther. 14:721–726.PubMedGoogle Scholar
  31. 31.
    Greengard, O., and Dewey, H. K., 1968, The developmental formation of liver glucose-6-phosphatase and reduced nicotinamide adenine dinucleotide phosphate dehydrogenase in fetal rats treated with thyroxine, J. Biol. Chem. 243:2745–2749.PubMedGoogle Scholar
  32. 32.
    Greengard, O., Federman, M., and Knox, W. E., 1972, Cytomorphometry of developing rat liver and its application to enzymatic differentiation, J. Cell. Biol. 52:261–272.PubMedCrossRefGoogle Scholar
  33. 33.
    Gruenwald, P., 1949, Degenerative changes in the right half of the liver resulting from intrauterine anoxia, Amer. J. Clin. Pathol. 19:801–813.Google Scholar
  34. 34.
    Gruenwald, P., and Minh, H. N., 1960, Evaluation of body and organ weights in perinatal pathology. I. Normal standards derived from autopsies, Amer. J. Clin. Pathol. 34:247–253.Google Scholar
  35. 35.
    Hadorn, E., 1958, Role of genes in developmental processes, in: The Chemical Basis of Development (W. D. McElroy and B. Glass, eds.), pp. 779–791, The Johns Hopkins Press, Baltimore.Google Scholar
  36. 36.
    Hahn, P., and Drahota, Z., 1966, The activities of citrate cleavage enzyme, acetyl-CoA synthetase and lipoprotein lipase in white and brown adipose tissue and the liver of the rat during development, Experientia 22:706.CrossRefGoogle Scholar
  37. 37.
    Hahn, P., and Skala, J., 1970, Some enzymes of glucose metabolism in the human fetus, Biol. Neonate 16:362–369.PubMedCrossRefGoogle Scholar
  38. 38.
    Herrmann, H., and Tootle, M. L., 1964, Specific and general aspects of the development of enzymes and metabolic pathways, Physiol. Rev. 44:289–371.PubMedGoogle Scholar
  39. 39.
    Herzfeld, A., and Knox, W. E., 1968, The properties, developmental formation, and estrogen induction of ornithine aminotransferase in rat tissue, J. Biol. Chem. 243:3327–3332.PubMedGoogle Scholar
  40. 40.
    Holt, P. G., and Oliver, I. T., 1968, Plasma corticosterone concentrations in perinatal rat, Biochem. J. 108:339–341.PubMedGoogle Scholar
  41. 41.
    Hommes, F. A., and Draisma, M. I., 1970, The development of L- and M-type aldolases in rat liver, Biochim. Biophys. Acta 222:251, 252.Google Scholar
  42. 42.
    Hommes, F. A., and Wilmink, C. W., 1968, Developmental changes of glycolytic enzymes in rat brain, liver and skeletal muscle, Biol. Neonate 12:181–193.Google Scholar
  43. 43.
    Huang, Y. Z., and Knox, E. W., 1975, Glutamine-dependent asparagine synthetase in fetal, adult and neoplastic rat tissue, Enzyme 19:314–328.PubMedGoogle Scholar
  44. 44.
    Immers, S. J., and Runnstrom, J., 1960, Release of respiratory control by 2,4-dinitrophenol in different stages of sea urchin development, Dev. Biol. 2:90–104.PubMedCrossRefGoogle Scholar
  45. 45.
    Jacob, F., and Monod, J., 1961, On the regulation of gene activity, Cold Spring Harbor Symp. Quant. Biol. 26:193–211.CrossRefGoogle Scholar
  46. 46.
    Jacquot, R., and Kretchmer, N., 1964, Effect of fetal decapitation on enzymes of glycogen metabolism, J. Biol. Chem. 239:1301–1304.PubMedGoogle Scholar
  47. 47.
    Johnson, B. E., Walsh, D. A., and Sallach, H. J., 1964, Changes in the activities of d-glycerate and d-3-phosphoglycerate dehydrogenase in the developing rat liver, Biochim. Biophys. Acta 85:202–205.PubMedGoogle Scholar
  48. 48.
    Kenney, F. T., and Kretchmer, N., 1959, Hepatic metabolism of phenylalanine during development, J. Clin. Invest. 38:2189–2196.PubMedCrossRefGoogle Scholar
  49. 49.
    Kirby, L., and Hahn, P., 1973, Enzyme induction in human fetal liver, Pediatr. Res. 7:75–81.PubMedCrossRefGoogle Scholar
  50. 50.
    Knowles, S. E., and Ballard, F. J., 1974, Pyruvate dehydrogenase activity in rat liver during development, Biol. Neonate 24:41–48.PubMedCrossRefGoogle Scholar
  51. 51.
    Knox, W. E., 1972, Enzyme Patterns in Fetal, Adult and Neoplastic Rat Tissues, S. Karger, Basel and New York.Google Scholar
  52. 52.
    Knox, W. E., and Mehler, A. H., 1951, The adaptive increase of the tryptophan peroxidase-oxidase system of the liver, Science 113:237, 238.Google Scholar
  53. 53.
    Knox, W. E., Auerbach, V. H., and Linn, E. C. C., 1956, Enzymatic and metabolic adaptations in animals, Physiol. Rev. 36:164–254.PubMedGoogle Scholar
  54. 54.
    Köhler, E., 1972, Activity of some enzymes of nucleic acid metabolism in developing rat liver, Naunyn-Schmiedeberg’s Arch. Pharmacol. 274:385–393.CrossRefGoogle Scholar
  55. 55.
    Krebs, H. A., 1956, Die Steuerung der Stoff-wechselvorgänge, Dtsch. Med. Wochenschr. 81:4–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Lane, M. D., and Moss, F., 1971, Regulation of fatty acid synthesis in animal tissues, in: Metabolic Pathways, Vol. 5, 3rd Ed., (H. J. Vogel, ed.), p. 23, Academic Press, New York.Google Scholar
  57. 57.
    Lang, C. A., 1965, Respiratory enzymes in the heart and liver of the prenatal and postnatal rat, Biochem. J. 95:365–371.PubMedGoogle Scholar
  58. 58.
    Lea, M. A., and Walker, D. G., 1964, The metabolism of glucose-6-phosphate in developing mammalian tissues, Biochem. J. 91:417–424.PubMedGoogle Scholar
  59. 59.
    Lind, J., 1963, Changes in the liver circulation at birth, Ann. N. Y. Acad. Sci. 111:110–120.PubMedCrossRefGoogle Scholar
  60. 60.
    Lindy, S., and Rajasalmi, M., 1966, Lactate dehydrogenase isozymes of chick embryo: Response to variations of ambient oxygen tension, Science 153:1401.PubMedCrossRefGoogle Scholar
  61. 61.
    Litwack, G., and Nemeth, A. M., 1965, Development of liver tyrosine aminotransferase activity in the rabbit, guinea pig, and chicken, Arch. Biochem. 109:316–320.CrossRefGoogle Scholar
  62. 62.
    Lynen, F., 1967, The role of biotin-dependent carboxylations in biosynthetic reactions, Biochem. J. 102:381–400.PubMedGoogle Scholar
  63. 63.
    Makoff, R., and Baldridge, R. C., 1964, The metabolism of histidine: Liver enzyme changes during development, Biochim. Biophys. Acta 90:282–286.PubMedCrossRefGoogle Scholar
  64. 64.
    Mall, F. P., 1906, A study of the structural unit of the liver, Amer. J. Anat. 5:227–308.CrossRefGoogle Scholar
  65. 65.
    Markert, C. L., and Miller, F., 1959, Multiple forms of enzymes: Tissue, ontogenetic, and species specific patterns, Proc. Natl. Acad. Sci. U.S.A. 45:753–763.PubMedCrossRefGoogle Scholar
  66. 66.
    Marsac, C., Saudubray, J. M., Moncion, A., and Leroux, J. P., 1976, Development of gluconeogenic enzymes in the liver of human newborns, Biol. Neonate 28:317–325.CrossRefGoogle Scholar
  67. 67.
    McGee, M. M., Greengard, O., and Knox, W. E., 1972, The quantitative determination of phenylalanine hydroxylase in rat tissues. Its developmental formation in liver, Biochem. J. 127:675–680.PubMedGoogle Scholar
  68. 68.
    McLean, A., Marwick, M. J., and Clayton, B. E., 1973, Enzymes involved in phenylalanine metabolism in the human fetus and child, J. Clin. Pathol. 26:678–683.PubMedCrossRefGoogle Scholar
  69. 69.
    Menon, K. M. J., Giese, S., and Jaffe, R. B., 1973, Hormone and fluoride sensitive adenylate cyclases in human fetal tissues, Biochem. Biophys. Acta 304:203–209.PubMedCrossRefGoogle Scholar
  70. 70.
    Middleton, M. C., and Walker, D. G., 1972, Comparison of the properties of two forms of pyruvate kinase in rat liver and determination of their separate activities during development, Biochem. J. 127:721–731.PubMedGoogle Scholar
  71. 71.
    Mino, M., and Takai, T., 1966, Enzymatic development of human fetus: Studies on cytochrome oxidase and succinic dehydrogenase in developing human fetus, Acta Paediatr. Jpn. (Overseas) 8:1–6.CrossRefGoogle Scholar
  72. 72.
    Mitchell, R. G., 1963, Histidine decarboxylase in the newborn human infant, J. Physiol. (London) 166:136–144.Google Scholar
  73. 73.
    Moog, F., 1965, Enzyme development in relation to functional differentiation, in: The Biochemistry of Animal Development (R. Weber, ed.), Vol. 1, pp. 307–365, Academic Press, New York.Google Scholar
  74. 74.
    Moyed, H. S., and Umbarger, H. E., 1962, Regulation of biosynthetic pathways, Physiol. Rev. 42:444–466.PubMedGoogle Scholar
  75. 75.
    Needham, J., 1931, Chemical Embryology, Cambridge University Press, London.Google Scholar
  76. 76.
    Nemeth, A. M., 1954, Glucose-6-phosphatase in the liver of the fetal guinea pig, J. Biol. Chem. 208:775–776.Google Scholar
  77. 77.
    Nemeth, A. M., 1959, Mechanisms controlling changes in tryptophan peroxidase activity in developing mammalian liver, J. Biol. Chem. 234:2921–2924.PubMedGoogle Scholar
  78. 78.
    Nemeth, A. M., 1963, Initiation of enzyme formation by birth, Ann. N. Y. Acad. Sci. 111:199–202.PubMedCrossRefGoogle Scholar
  79. 79.
    Numa, S., Nakanishi, S., Hashimoto, T., Irritani, N., and Okazaki, T., 1970, Role of acetyl coenzyme A carboxylase in the control of fatty acid synthesis, Vitam. Horm. (N.Y.) 28:215–243.Google Scholar
  80. 80.
    Paigen, K., 1961, The genetic control of enzyme activity during differentiation, Proc. Natl. Acad. Sci. U.S.A. 97:1641–1649.CrossRefGoogle Scholar
  81. 81.
    Pette, D., 1965, Plan und Muster im zellulären Stoffwechsel, Naturwissenschaften 52:597–616.CrossRefGoogle Scholar
  82. 82.
    Pette, D., and Dölken, G., 1975, Some aspects of regulation of enzyme levels in muscle energy-supplying metabolism, Adv. Enzyme Regul. 13: 355–377.PubMedCrossRefGoogle Scholar
  83. 83.
    Pette, D., Luh, W., and Bücher, T., 1962, A constant-proportion group in the enzyme activity pattern of the Embden-Meyerhof chain, Biochem. Biophys. Res. Commun. 7:419–424.PubMedCrossRefGoogle Scholar
  84. 84.
    Pfleiderer, G., and Wachsmuth, E. D., 1961, Die Heterogenität der Lactatdehydrogenase in Entwicklungsgeschichte und Pathologie des Menschen, Klin. Wochenschr. 39:352–354.PubMedCrossRefGoogle Scholar
  85. 85.
    Philippidis, H., Hanson, R. W., Reshef, L., Hopgood, M. F., and Ballard, F. J., 1972, The initial synthesis of proteins during development, Biochem. J. 126:1127–1134.PubMedGoogle Scholar
  86. 86.
    Pikkarainen, P. H., and Räihä, N. C. R., 1967, Development of alcohol dehydrogenase activity in the human liver, Pediatr. Res. 1:165–168.PubMedCrossRefGoogle Scholar
  87. 87.
    Pitot, H. C., 1964, The regulation of enzyme synthesis in mammalian tissues, in: Sixth International Congress on Biochemistry, New York, Abstracts, Vol. 9, p. 682.Google Scholar
  88. 88.
    Planet, G., and Willemot, J., 1974, Changes in purine phosphoribosyltransferase activities in mouse brain, liver, and muscle with age, Biochim. Biophys. Acta 364:236–242.PubMedGoogle Scholar
  89. 89.
    Polluck, M. R., 1959, Induced formation of enzymes, in: The Enzymes (P. D. Boyer, H. Lardy, and K. Myrbäck, eds.), Vol. 1, p. 628, Academic Press, New York.Google Scholar
  90. 90.
    Pulkkinen, M. O., 1966, Sulfate conjugation during development in human, rat, and guinea pig, Acta Physiol. Scand. 66:115–119.PubMedCrossRefGoogle Scholar
  91. 91.
    Räihä, N. C. R., 1973, Phenylalanine hydroxylase in human liver during development, Pediatr. Res. 7:1–4.PubMedCrossRefGoogle Scholar
  92. 92.
    Räihä, N. C. R., Koskinen, M., and Pikkarainen, P., 1967, Developmental changes in alcohol dehydrogenase activity in rat and guinea pig, Biochem. J. 103:623–626.PubMedGoogle Scholar
  93. 93.
    Reed, L.J., and Cox, D. J., 1966, Macromolecular organization of enzyme systems, Ann. Rev. Biochem. 35:57–84.CrossRefGoogle Scholar
  94. 94.
    Reem, G. H., and Kretchmer, N., 1957, Development of phenylalanine hydroxylase in liver of the rat, Proc. Soc. Exp. Biol. Med. 96:458.PubMedGoogle Scholar
  95. 95.
    Richterich, R., Schafroth, P., and Franz, H. E., 1961–1962, Das isolierte Glomerulum der Rattenniere. III. Heterogenität der Lactat-Dehydrogenase in Nierenrinde, Nierenmark und Glomerulum, Enzymol. Biol. Clin. (Basel) 1:114–122.Google Scholar
  96. 96.
    Ross, M. H., and Ely, J. O., 1954, Aging and enzyme activity, J. Franklin Inst. 258:63.CrossRefGoogle Scholar
  97. 97.
    Sarrut, S., and Nezelof, C., 1959, La maturation hépatique ses aspects histologiqués, Rev. Int. Hepatol. 9:425–471.PubMedGoogle Scholar
  98. 98.
    Sato, K., Morris, H. P., and Weinhouse, S., 1972, Phosphorylase: A new isozyme in rat hepatic tumors in fetal liver, Science 178:879–881.PubMedCrossRefGoogle Scholar
  99. 99.
    Schimke, R. T., Sweeney, E. W., and Berlin, C. M., 1964, An analysis of the kinetics of rat liver tryptophan pyrrolase induction: The significance of both enzyme synthesis and degradation, Biochem. Biophys. Res. Commun. 15:214–219.PubMedCrossRefGoogle Scholar
  100. 100.
    Schulz, D. M., Giordano, D. A., and Schulz, D. H., 1962, Weights of organs of fetuses and infants, Arch. Pathol. (Chicago) 74:244–250.Google Scholar
  101. 101.
    Schwartz, A. L., Räihä, N., and Rall, T. W., 1974, Effect of dibutyryl cyclic AMP on glucose-6-phosphatase activity in human fetal liver expiants, Biochim. Biophys. Acta 343:500.PubMedCrossRefGoogle Scholar
  102. 102.
    Segal, H. L., Rosso, R. G., Hopper, S., and Weber, M. M., 1962, Direct evidence for an increase in enzyme level as the basis for the glucocorticoid-induced increase in glutamic alanine transaminase activity in rat liver, J. Biol. Chem. 237:PC 3303, 3304.Google Scholar
  103. 103.
    Sekeris, C. E., 1967, Wirkung der Hormone auf den Zellkern, in: Wirkungsmechanismen der Hormone (P. Karlson, ed.), pp. 126–157, Springer-Verlag, Berlin.Google Scholar
  104. 104.
    Sereni, F., Kenney, F. T., and Kretchmer, N., 1959, Factors influencing the development of tyrosine 03b1-ketoglutarate transaminase activity in rat liver, J. Biol. Chem. 234:609–612.PubMedGoogle Scholar
  105. 105.
    Shaw, C. R., 1965, Electrophoretic variation in enzymes, Science 149:936–943.PubMedCrossRefGoogle Scholar
  106. 106.
    Shoyab, M., and Bachhawat, B. K., 1967, Age dependent changes in the level of cytidine 5′-mono-phospho-N-acetyl-neuraminic acid synthesizing and degrading enzymes and bound sialic acid in rat liver, Indian]. Biochem. 4:142–145.Google Scholar
  107. 107.
    Sillero, A., Sillero, M. A. G., and Sols, A., 1970, Development of the enzymes of fructose and glycer-aldehyde metabolism in liver, Enzymol. Biol. Clin. 11:563–566.Google Scholar
  108. 108.
    Snell, K., and Walker, D. G., 1972, The adaptive behavior of isoenzyme forms of rat liver alanine aminotransferases during development, Biochem. J. 128:403–413.PubMedGoogle Scholar
  109. 109.
    Stave, U., 1964, Age dependent changes of metabolism. I. Studies of enzyme patterns of rabbit organs, Biol. Neonate 6:128–147.CrossRefGoogle Scholar
  110. 110.
    Stave, U., 1967, Importance of proper substrate concentrations for enzyme assays in tissue homo-genates for developmental studies, Enzymol. Biol. Clin. (Basel) 8:21–32.Google Scholar
  111. 111.
    Stave, U., 1975, Perinatal changes of interorgan differences in cell metabolism, Biol. Neonate 26: 318–332.PubMedCrossRefGoogle Scholar
  112. 112.
    Stave, U., and Armstrong, M. D., 1973, Tissue free amino acid concentrations in perinatal rabbits, Biol. Neonate 22:374–387.PubMedCrossRefGoogle Scholar
  113. 113.
    Stave, U., and Wolf, H., 1971, Enzyme studies in perinatal tissues of normal, hypothermic, hypo-trophic, and hypoxic rabbits, Biol. Neonate 19:434–450.PubMedCrossRefGoogle Scholar
  114. 114.
    Strauss, B. S., 1960, An Outline of Chemical Genetics, W. B. Saunders Co., Philadelphia.Google Scholar
  115. 115.
    Swiatek, K. R., Chao, K.-L., Chao, H.-L., Cornblath, M., and Tildon, J. T., 1970, Enzymatic adaptation in newborn pig liver, Biochim. Biophys. Acta 222:145–154.PubMedCrossRefGoogle Scholar
  116. 116.
    Tata, J. R., 1970, Regulation of protein systhesis by growth and developmental hormones, Biochemical Action of Hormones (G. Litwack, ed.), Vol. I, pp. 89–133, Academic Press, New York.Google Scholar
  117. 117.
    Taylor, C. B., Bailey, E., and Bartley, W., 1967, Changes in hepatic lipogenesis during development of the rat, Biochem. J. 105:717–722.PubMedGoogle Scholar
  118. 118.
    Telford, J. M., and West, G. B., 1961, The effect of age on the formation of histamine in the rat, J. Physiol. (London) 157:303–314.Google Scholar
  119. 119.
    Theil, S., 1966, Die Aktivität der Glycerokinase in Placenta, mütterlicher und fötaler Leber bei Ratten, Naturwissenschaften 53:436.PubMedCrossRefGoogle Scholar
  120. 120.
    Theile, H., 1965, Die prä- und postnatale Entwicklung einiger Leberenzyme beim Tier, Paediatr. Grenzgeb. 4:57–66.Google Scholar
  121. 121.
    Theile, H., and Frank, M., 1964, Der Blutgehalt der Leber im Verlaufe der prä- und postnatalen Entwicklung und seine Bedeutung für Enzymbestimmungen in Leberhomogenaten, Acta Biol. Med. Ger. 13:317–324.PubMedGoogle Scholar
  122. 122.
    Tomkins, G. M., and Thompson, E. B., 1967, Hormonal control of protein synthesis at the translational level, in: Wirkungemechanismen der Hormone (P. Karlson, ed.), pp. 107–125, Springer-Verlag, Berlin.Google Scholar
  123. 123.
    Vernon, R. G., and Walker, D. G., 1968, Changes in activity of some enzymes involved in glucose utilization and formation in developing rat liver, Biochem. J. 106:321–331.PubMedGoogle Scholar
  124. 124.
    Vesell, E. S., and Philip, J., 1963, Isozymes of lactic dehydrogenase: Sequential alterations during development, Ann. N Y. Acad. Sci. 111:243–256.PubMedCrossRefGoogle Scholar
  125. 125.
    Villee, C. A., 1966, Differentiation and enzymatic heterogeneity, Fed. Proc. Fed. Amer. Soc. Exp. Biol. 25:874–878.Google Scholar
  126. 126.
    Villee, C. A., Hagerman, D. D., Holmberg, N., Lind, J., and Villee, D. B., 1958, The effects of anoxia on the metabolism of human fetal tissues, Pediatrics 22:953–970.PubMedGoogle Scholar
  127. 127.
    Volpe, J. J., and Laster, L., 1973, Transulfuration in fetal and postnatal mammalian liver and brain. Cystathionine synthase, its relation to hormonal influences and cystathionine, Biol. Neonate 20:385–403.Google Scholar
  128. 128.
    Volpe, J. J., Lyles, T. O., Roncari, D. A. K., and Vagelos, P. R., 1973, Fatty acid synthetase of developing brain and liver, J. Biol. Chem. 248:2502–2513.PubMedGoogle Scholar
  129. 129.
    Wachsmuth, E. D., and Pfleiderer, G., 1963, Biochemische Untersuchungen an kristallinen Isozymen der Lactatdehydrogenase aus menschlichen Organen, Biochem. Z. 336:545–556.PubMedGoogle Scholar
  130. 130.
    Walker, D. G., 1963, The postnatal development of hepatic fructokinase, Biochem. J. 87:576–581.PubMedGoogle Scholar
  131. 131.
    Warburg, O., 1925, Manometrische Messung des Zellstoffwechsels im Serum, Biochem. Z. 164:481–503.Google Scholar
  132. 132.
    Warburg, O., 1948, Wasserstoffübertragende Fermente, Springer-Verlag, Berlin.Google Scholar
  133. 133.
    Weber, G., Lea, M. A., Convery, H. J. H., and Stamm, N.B., 1967, Regulation of gluconeogenesis and glycolysis: Studies of mechanisms controlling enzyme activity, Adv. Enzyme Regul. 5:257–298.PubMedCrossRefGoogle Scholar
  134. 134.
    Weber, G., Lea, M. A., Fisher, E. A., and Stamm, N. B., 1966, Regulatory pattern of liver carbohydrate metabolizing enzymes: Insulin as inducer of key glycolytic enzymes, Enzymol. Biol. Clin. (Basel) 7:11–24.Google Scholar
  135. 135.
    Weber, G., Singhal, R. L., Stamm, N. B., and Srivastava, S. K., 1965, Hormonal induction and suppression of liver enzyme biosynthesis, Fed. Proc. Fed. Amer. Soc. Exp. Biol. 24:745–754.Google Scholar
  136. 136.
    Weinhold, P. A., Skinner, R. S., and Sanders, R. D., 1973, Activity and some properties of choline kinase, cholinephosphate cytidyltransferase, and choline phosphotransferase during liver development in the rat, Biochem. Biophys. Acta 326:43–51.PubMedGoogle Scholar
  137. 137.
    Widdowson, E. M., and Crabb, D. E., 1976, Changes in the organs of pigs in response to feeding for the first 24 h after birth. I. The internal organs and muscles, Biol. Neonate 28:261–271.CrossRefGoogle Scholar
  138. 138.
    Wiggert, B. O., and Villee, C. A., 1964, Multiple molecular forms of malic and lactic dehydrogenases during development, J. Biol. Chem. 239:444–451.PubMedGoogle Scholar
  139. 139.
    Winick, M., and Noble, A., 1965, Quantitative changes in DNA, RNA and protein during prenatal and postnatal growth in the rat, Devel. Biol. 12:451–466.CrossRefGoogle Scholar
  140. 140.
    Wolf, H., Stave, U., Novak, M., and Monkus, E., 1974, Recent investigation on neonatal fat metabolism, J. Perinat. Med. 2:75–87.PubMedCrossRefGoogle Scholar
  141. 141.
    Wu, C., 1964, Glutamine synthetase. III. Factors controlling its activity in the developing rat, Arch. Biochem. 106:394–401.PubMedCrossRefGoogle Scholar
  142. 142.
    Yeung, D., and Oliver, I. T., 1967, Gluconeogenesis from amino acids in neonatal rat liver, Biochem. J. 103:744–748.PubMedGoogle Scholar
  143. 143.
    Yeung, D., and Oliver, I. T., 1968, Factors affecting the premature induction of phosphopyruvate carboxylase in neonatal rat liver, Biochem. J. 108:325–331.PubMedGoogle Scholar
  144. 144.
    Yeung, D., Stanley, R. S., and Oliver, I. T., 1967, Development of gluconeogenesis in neonatal rat liver, Biochem. J. 105:1219–1227.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Uwe Stave
    • 1
  1. 1.Mailman Center for Child Development and Department of PediatricsUniversity of Miami School of MedicineMiamiUSA

Personalised recommendations