Skip to main content

Functions and Metabolism of Trace Elements

  • Chapter
Perinatal Physiology

Abstract

The human and animal body contains most, if not all, of the elements in the periodic table (Fig. 1). Some of these elements are found in larger amounts, and their main functions have been quite well elucidated. Others are present only in trace quantities, and their functions (if indeed they have any) are not understood at all. The presence of an element in larger or smaller amounts in the body cannot be taken as an indication of its greater or lesser importance for the organism. Cobalt, for example, is found only in the tiniest quantities and has only a few enzyme-linked functions in the mammalian body, but it is an “essential” element, meaning that it is crucial for life, health, and reproduction. Elements for which essentiality has not been established are often more important quantitatively than some trace elements known to be essential (Table I).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agababyan, A. A., 1973, Dynamics of trace elements in the colostrum of cows, buffaloes, and sheep, Tr. Stavrop. Skh. Inst. 4:203 (Chem. Abstr. 81:102260z).

    Google Scholar 

  2. Al-Rashid, R. A., and Spangler, J., 1971, Neonatal copper deficiency, N. Engl J. Med. 285:841.

    Article  PubMed  CAS  Google Scholar 

  3. Arneil, G. C., 1969, Some metabolic implications of strontium-90 in children, in: Mineral Metabolism in Paediatrics (D. Barltrop and W. J. Burland, eds.), pp. 71–81, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  4. Ashkenazi, A., Levin, S., Djaldetti, M., Fishel, E., and Benvenisti, D., 1973, The syndrome of neonatal copper deficiency, Paediatrics 52:525.

    CAS  Google Scholar 

  5. Baggs, R. B., and Miller, S. A., 1973, Nutritional iron deficiency as a determinant of host resistance in the rat, J. Nutr. 103:1554.

    PubMed  CAS  Google Scholar 

  6. Baglan, R. J., Brill, A. B., Schubert, A., Wilson, D., Larsen, K., Dyer, N., Mansour, M., Schaffner, W., Hoffman, L., and Davies, J., 1974, Utility of placental tissue as an indicator of trace element exposure to adult and fetus, Environ. Res. 8:64.

    Article  PubMed  CAS  Google Scholar 

  7. Barltrop, D., 1969, Transfer of lead to the human fetus, in: Mineral Metabolism in Paediatrics (D. Barltrop and W. J. Burland, eds.), pp. 135–150, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  8. Beem, K. M., Rich, W. E., and Rajagopalan, K. V., 1974, Total reconstitution of copper-zinc superoxide dismutase, J. Biol. Chem. 249:7298.

    PubMed  CAS  Google Scholar 

  9. Brambell, F. W. R., 1970, The Transistion of Passive Immunity from Mother to Young, North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  10. Bremner, I., 1974, Copper and zinc proteins in ruminant liver, in: Trace Element Metabolism in Animals—2 (W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), pp. 489–491, University Park Press, Baltimore.

    Google Scholar 

  11. Bremner, I., and Davies, N. T., 1974, Studies on the appearance of a copper binding protein in rat liver, Biochem. Soc. Trans. 2:425.

    CAS  Google Scholar 

  12. Bremner, I., and Davies, N. T., 1974, Zinc proteins in rat liver, in: Trace Element Metabolism in Animals— 2 (W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), pp. 493–495, University Park Press, Baltimore.

    Google Scholar 

  13. Bullen, J. J., Rogers, H. J., and Leigh, L., 1972, Iron-binding proteins in milk and resistance to E. coli infection in infants, Br. Med. J. 1:69.

    Article  PubMed  CAS  Google Scholar 

  14. Burch, R. E., Williams, R. V., Hahn, H. K. J., Jetton, M. M., and Sullivan, J. F., 1975, Serum and tissue enzyme activity and trace-element content in response to zinc deficiency in the pig, Clin. Chem. 21:568.

    PubMed  CAS  Google Scholar 

  15. Burk, R. F., 1974, In vivo 75Se binding to human plasma proteins after administration of 75SeO3 2~, Biochem. Biophys. Acta 372:255.

    Article  CAS  Google Scholar 

  16. Burk, R. F., Foster, K. A., Greenfield, P. M., and Kiker, K. W., 1974, Binding of simultaneously administered inorganic selenium and mercury to a rat plasma protein, Proc. Soc. Exp. Biol. Med. 145:782.

    PubMed  CAS  Google Scholar 

  17. Burt, R. L., and Davidson, W. F., 1974, Carbohydrate metabolism in pregnancy. Possible role of chromium, Acta Diabetol. hat. 10:770.

    Article  CAS  Google Scholar 

  18. Butt, E. M., Nusbaum, R. E., Gilmour, T. C., and Didio, S. L., 1964, Trace metal levels in human serum and blood, Arch. Environ. Health 8:52.

    PubMed  CAS  Google Scholar 

  19. Carlisle, E. M., 1974, Silicon as an essential element, Fed. Proc. Fed. Amer. Soc. Exp. Biol. 33:1758.

    CAS  Google Scholar 

  20. Carlisle, E. M., 1974, Essentiality and function of silicon, in: Trace Element Metabolism in Animals2 (W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds), pp. 407–423, University Park Press, Baltimore.

    Google Scholar 

  21. Chesters, J. K., 1974, Biochemical functions of zinc with emphasis on nucleic acid metabolism and cell division, in: Trace Elements Metabolism in Animals—2 (W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), pp. 39–49, University Park Press, Baltimore.

    Google Scholar 

  22. Curran, G. L., and Burch, R. E., 1968, Biological and health effects of vanadium, in: Trace Substances in Environmental Health (D. D. Hemphill, ed.), pp. 96–105, University of Missouri, Columbia.

    Google Scholar 

  23. Dickson, R. C., and Tomlinson, R. H., 1967, Selenium in blood and human tissues, Clin. Chim. Acta 16:311.

    Article  PubMed  CAS  Google Scholar 

  24. Diplock, A. T., 1974, The nutritional and metabolic roles of selenium and vitamin E, Proc. Nutr. Soc. 33:315.

    Article  PubMed  CAS  Google Scholar 

  25. Diplock, A. T., 1974, Possible stabilizing effect of vitamin E on microsomal, membrane-bound, selenide-containing proteins and drug-metabolizing enzyme systems, Amer. J. Clin. Nutr. 27:995.

    PubMed  CAS  Google Scholar 

  26. Evans, G. W., 1973, Copper homeostasis in the mammalian system, Physiol. Rev. 53:535.

    PubMed  CAS  Google Scholar 

  27. Evans, G. W., and Wiederanders, R. E., 1968, Effect of hormones on ceruloplasmin and copper concentrations in the plasma of the rat, Amer. J. Physiol. 214:1152.

    PubMed  CAS  Google Scholar 

  28. Evans, G. W., Wolentz, M. L., and Grace, C. I., 1975, Copper-binding proteins in neonatal and adult rat liver soluble fraction, Nutr. Rep. Int. 12:261.

    CAS  Google Scholar 

  29. Finelli, V. N., Murthy, L., Peirano, W. B., and Petering, H. G., 1974, Aminolevulinate dehydratase, a zinc dependent enzyme, Biochem. Biophys. Res. Commun. 60:1418.

    Google Scholar 

  30. Fogel, P. I., 1972, Effect of estrogenic hormones and serotonin on trace elements in uterine muscle and placenta, Akush. Ginekol. (Kiev) 2:163 (Chem. Abstr. 81:58557a).

    CAS  Google Scholar 

  31. Furugouri, K., 1974, Copper and hemoglobin status in newborn piglets, Jpn. J. Vet. Sci. 36:255.

    Article  CAS  Google Scholar 

  32. Garner, C. W., and Behal, F. J., 1974, Human liver aminopeptidase. Role of metal ions in mechanism of action, Biochemistry 13:3227.

    Article  PubMed  CAS  Google Scholar 

  33. Granick, S., 1946, Protein apoferritin and ferritin in iron feeding and absorption, Science 103:107.

    Article  CAS  Google Scholar 

  34. Greengard, O., 1971, Enzymic differentiation in mammalian tissues, in: Essays in Biochemistry, Vol. 7 (P. N. Campbell and F. Dickens, eds.), pp. 159–198, Academic Press, New York.

    Google Scholar 

  35. Greengard, O., 1972, The developmental formation of enzymes in rat liver, in: Biochemical Actions of Hormones, Vol. I (G. Litwack, ed.), pp. 53–85, Academic Press, New York.

    Google Scholar 

  36. Grigoryan, A. S., Manasyan, A. O., Arutyunyan, D., and Oganesyan, E. P., 1975, Changes of trace element contents in cow colostrum, Izv. Skh. Nauk 18:54 (Chem. Abstr. 83:111780n).

    Google Scholar 

  37. Guenther, von T., Ruhe, B., Schmalbeck, J., and Tehrani, N., 1974, Zur Biochemie der Spurenelemente Zink, Kupfer, Mangan, Molybdaen, Chrom und Kobalt: Verteilung, Bindung, und Regulation durch Nebennierenrindenhormone, Z. Klin. Chem. Klin. Biochem. 12:327.

    CAS  Google Scholar 

  38. Hafeman, D. G., Sunde, R. A., and Hoekstra, W. G., 1974, Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat, J. Nutr. 104:580.

    PubMed  CAS  Google Scholar 

  39. Hahn, P. F., Bale, W. F., Ross, J. F., Balfour, W. M., and Whipple, G. F., 1943, Radioactive iron absorption by gastrointestinal tract, J. Exp. Med. 78:169.

    Article  PubMed  CAS  Google Scholar 

  40. Halstead, J. A., Smith, J. C., Jr., and Irwin, M. I., 1974, A conspectus of research on zinc requirements of man, J.Nutr. 104:345.

    Google Scholar 

  41. Hambidge, K. M., 1974, Zinc deficiency in children, in: Trace Element Metabolism in Animals—2 (W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), pp. 171–183, University Park Press, Baltimore.

    Google Scholar 

  42. Hart, D. T., and Borowitz, J. L., 1974, Adrenal catecholamine release by divalent mercury and cadmium, Arch. Int. Pharmacodyn. Ther. 209:94.

    PubMed  CAS  Google Scholar 

  43. Hellerstein, S., Kaiser, C., Darrow, D. D., and Darrow, D. C., 1960, The distribution of bromide and chloride in the body, J. Clin. Invest. 39:282.

    Article  PubMed  CAS  Google Scholar 

  44. Henkin, R. I., 1971, Newer aspects of copper and zinc metabolism, in: Newer Trace Elements in Nutrition (W. Mertz and W. E. Cornatzer, eds.), Marcel Dekker, New York.

    Google Scholar 

  45. Hershko, C., Cook, T. D., and Finch, C. A., 1973, Storage iron kinetics. III. Study of desferoxamine action by selective radioiron labels of RE and parenchymal cells, J. Lab. Clin. Med. 81:876.

    PubMed  CAS  Google Scholar 

  46. Hill, C. H., 1974, Reversal of selenium toxicity in chicks by mercury, copper, and cadmium, J. Nutr. 104:593.

    PubMed  CAS  Google Scholar 

  47. Hoekstra, W. G., 1974, Biochemical role of selenium, in: Trace Element Metabolism in Animals—2 (W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), pp. 61–76, University Park Press, Baltimore.

    Google Scholar 

  48. Hoekstra, W. G., 1975, Biochemical function of selenium and its relation to vitamin E, Fed. Proc. Fed. Amer. Soc. Exp. Biol. 34:2083.

    CAS  Google Scholar 

  49. Hopkins, L. L., Jr., 1974, Essentiality and function of vanadium, in: Trace Element Metabolism in Animals— 2 (W. G. Hoekstra, J. W. Suttie, H. E. Ganther and W. Mertz, eds.), pp. 397–405, University Park Press, Baltimore.

    Google Scholar 

  50. Hopkins, L. L., Jr., and Mohr, H. E., 1974, Vanadium as an essential element, Fed. Proc. Fed. Amer. Soc. Exp. Biol. 33:1773.

    CAS  Google Scholar 

  51. Hopkins, L. L., and Schwarz, K., 1964, Chromium (III) binding to serum proteins, specifically sidero-philin, Biochem. Biophys. Acta 90:484.

    Article  PubMed  CAS  Google Scholar 

  52. Jirka, M., Blanicky, P., and Cerna, M., 1974, The Zn-a2-glycoprotein level in human serum during ontogenesis, Clin. Chim. Acta 56:31.

    Article  PubMed  CAS  Google Scholar 

  53. Kaegi, J. H. R., Himmelhoch, S. R., Whanger, P. D., Bethune, J. L., and Vallée, B. L., 1974, Equine hepatic and renal metallothioneins, J. Biol. Chem. 249:3537.

    CAS  Google Scholar 

  54. Karpel, J. T., and Peden, V. H., 1972, Copper deficiency in long-term parenteral nutrition, J. Pediatr. 80:32.

    Article  PubMed  CAS  Google Scholar 

  55. Klevay, L. M., 1973, Hypercholesterolemia in rats produced by an increase in the ratio of zinc to copper ingested, Amer. J. Clin. Nutr. 26:1060.

    PubMed  CAS  Google Scholar 

  56. Klevay, L. M., 1975, The ratio of zinc to copper of diets in the United States, Nutr. Rep. Int. 11:237.

    Google Scholar 

  57. Klevay, L. M., 1975, Coronary heart disease: The zinc/copper hypothesis, Amer. J. Clin. Nutr. 28:764.

    PubMed  CAS  Google Scholar 

  58. Koldovsky, O., 1972, Hormonal and dietary factors in the development of digestion and absorption, in: Nutrition and Development (M. Winick, ed.), pp. 135–199, Wiley-Interscience, New York.

    Google Scholar 

  59. Kovalsky, V. V., Vorotnitskaya, I. E., and Tsoi, G. G., 1974, Adaptive changes of the milk xanthine oxidase and its isoenzymes during molybdenum and copper action, in: Trace Element Metabolism in Animals— 2(W. G. Hoekstra,J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), pp. 161–170, University Park Press, Baltimore.

    Google Scholar 

  60. Leach, R. M., Jr., 1974, Biochemical role of manganese, in: Trace Element Metabolism in Animals—2 (W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), pp. 51–59, University Park Press, Baltimore.

    Google Scholar 

  61. Lee, C. R., Cartwright, G. E., and Wintrobe, M. M., 1968, Heme biosynthesis in copper deficient swine, Proc. Soc. Exp. Biol. Med. 127:977.

    PubMed  CAS  Google Scholar 

  62. Linder, M. C., and Munro, H. N., 1973, Iron and copper metabolism during development, Enzyme 15:111.

    PubMed  CAS  Google Scholar 

  63. Linder, M. C., Dunn, V., Isaacs, E., Jones, D., Lim, S., Van Volkom, M., and Munro, H. N., 1975, Ferritin and intestinal iron absorption: Pancreatic enzymes and free iron, Amer. J. Physiol. 228:196.

    PubMed  CAS  Google Scholar 

  64. Linder, M. C., Moor, J. R., Scott, L. E., and Munro, H. N., 1972, Prenatal and postnatal changes in the content and species of ferritin in rat liver, Biochem. J. 129:455.

    PubMed  CAS  Google Scholar 

  65. Lipschitz, D. A., Cook, J. D., and Finch, C. A., 1974, A clinical evaluation of serum ferritin as an index of iron stores, N. Engl. J. Med. 290:1213.

    Article  PubMed  CAS  Google Scholar 

  66. Majumdar, A. P. N., and Wadsworth, G. R., 1974, The influence of the level of protein in the diet of the pregnant mouse on transfer of iron to the fetus, Nutr. Rep. Int. 9:47.

    CAS  Google Scholar 

  67. Mansour, M. M., Schubert, A. R., and Glasser, S. R., 1972, Mechanism of placental iron transfer in the rat, Amer. J. Physiol. 222:1628.

    PubMed  CAS  Google Scholar 

  68. Masson, P. L., and Heremans, J. F., 1971, Lacto-ferrin in milk from different species, Comp. Biochem. Physiol. 39B:119.

    Google Scholar 

  69. Mazur, A., and Carleton, A., 1965, Hepatic xanthine oxidase and ferritin iron in the developing rat, Blood 26:317.

    PubMed  CAS  Google Scholar 

  70. McConnell, K. P., Hsu, J. M., Herrman, J. L., and Anthony, W. L., 1974, Parallelism between sulfur and selenium amino acids in protein synthesis in the skin of zinc deficient rats, in: Trace Element Metabolism in Animals—2 (W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), pp. 736–738, University Park Press, Baltimore.

    Google Scholar 

  71. McCoy, K. E. M., and Weswig, P. H., 1969, Some selenium responses in the rat not related to vitamin E, J. Nutr. 98:383.

    PubMed  CAS  Google Scholar 

  72. Mertz, W., 1974, Chromium as a dietary essential for man, in: Trace Element Metabolism in Animals—2 (W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), pp. 185–197, University Park Press.

    Google Scholar 

  73. Mertz, W., Roginski, E. E., Feldman, F. J., and Thurman, D. E., 1969, Dependence of chromium transfer into the rat embryo on the chemical form, J. Nutr. 99:363.

    PubMed  CAS  Google Scholar 

  74. Messer, H. H., Armstrong, W. D., and Singer, L., Essentiality and function of fluoride, in: Trace Element Metabolism in Animals—2 (W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), pp. 425–435, University Park Press, Baltimore.

    Google Scholar 

  75. Moiseeva, S. Z., 1973, Level of nickel in the organs and tissues of rabbits when its content in their rations is varied, Sb. Rab. Leningr. Vet. Inst. 33:122 (Chem. Abstr. 81:1680 98j).

    Google Scholar 

  76. Munro, H. N., Linder, M. C., Haberman, M., and Catsimpoolas, N., 1975, Ferritins from normal and malignant human tissues, in: Proteins of Iron Storage and Transport (R. R. Crichton, ed.), pp. 223–230, North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  77. Murray, M. J., and Stein, W., 1970, Contribution of maternal rat iron stores to fetal iron in rats, J. Nutr. 100:1023.

    PubMed  CAS  Google Scholar 

  78. Nielson, F. H., and Ollerich, D. A., 1974, Nickel: A new essential trace element, Fed. Proc. Fed. Amer. Soc. Exp. Biol. 33:1767.

    Google Scholar 

  79. Nielson, F. H., Myron, D. R., Givand, S., Zimmerman, T. J., and Ollerich, D. A., 1975, Nickel deficiency in rats, J. Nutr. 105:1620.

    Google Scholar 

  80. Nishimura, H., Hmota, S., Tanaka, O., Ueda, M., and Uno, T., 1974, Normal mercury level in human embryos and fetuses, Biol. Neonate 24:197.

    Article  PubMed  CAS  Google Scholar 

  81. Nomoto, S., 1974, Determination and pathophysiological study of nickel in humans and animals II. Measurement of nickel in human tissues by atomic absorption spectrometry, Shinshu Igaku Zasshi 22:39.

    CAS  Google Scholar 

  82. Nomoto, S., 1974, Determination and pathophysiological study of nickel in humans and animals III. In vivo labeling and separation of nickeloplasmin in rabbit serum and its immunological study, Shinshu Igaku Zasshi 22:45.

    CAS  Google Scholar 

  83. Onkelinx, C., Becker, J., and Sunderman, F. W., Jr., 1974, Compartmental analysis of nickel (II) 63 metabolism in rodents, in: Trace Element Metabolism in Animals—2 (W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), pp. 560–563, University Park Press, Baltimore.

    Google Scholar 

  84. Owen, C. A., Jr., 1971, Metabolism of copper 67 by the copper deficient rat, Amer. J. Physiol. 221:1722.

    PubMed  CAS  Google Scholar 

  85. Parisi, A. F., and Vallée, B. L., 1969, Zinc metal-loenzymes: Characteristics and significance in biology and medicine, Amer. J. Clin. Nutr. 22:1222.

    PubMed  CAS  Google Scholar 

  86. Perry, H. M., Tipton, I. H., Schroeder, H. A., Steiner, R. L., and Cook, M. J., 1961, Variation in the concentration of cadmium in human kidney as a function of age and geographic origin, J. Chron. Dis. 14:259.

    Article  PubMed  CAS  Google Scholar 

  87. Petering, H. G., The effect of cadmium and lead on copper and zinc metabolism, in: Trace Element Metabolism in Animals—2 (W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), pp. 311–325, University Park Press, Baltimore.

    Google Scholar 

  88. Pribluda, L. A., 1963, The chromium content of hollow bones of the human fetus, Dokl. Akad. Nauk. Belorussk. SSR 7:135 (Chem. Abstr. 59:3142d).

    CAS  Google Scholar 

  89. Quarterman, J., 1973, Factors influencing the amount and availability of trace elements in human food plants, Qual. Plant.—Plant Foods Hum. Nutr. 23:171.

    Article  CAS  Google Scholar 

  90. Quarterman, J., Mills, C. F., and Humphries, W. R., 1966, The reduced secretion of, and sensitivity to, insulin in zinc-deficient rats, Biochem. Biophys. Res. Commun. 25:354.

    Article  PubMed  CAS  Google Scholar 

  91. Riordan, J. R., and Gower, I., 1975, Purification of low molecular weight copper proteins from copper loaded liver, Biochem. Biophys. Res. Commun. 66:678.

    Article  PubMed  CAS  Google Scholar 

  92. Robbins, E., and Pederson, T., 1970, Iron: Its intracellular localization and possible role in cell division, Proc. Natl. Acad. Sci. U.S.A. 66:1244.

    Article  PubMed  CAS  Google Scholar 

  93. Rodgers, G. M., Fisher, J. W., and George, W. J., 1974, Elevation of renal cyclic GMP concentrations and plasma lysosomal enzyme activity following cobalt treatment in rats, Biochem. Biophys. Res. Commun. 59:979.

    Article  PubMed  CAS  Google Scholar 

  94. Roeser, H. P., Lee, G. R., Nacht, S., and Cartwright, G. E., 1970, The role of ceruloplasmin in iron metabolism, J. Clin. Invest. 49:2408.

    Article  PubMed  CAS  Google Scholar 

  95. Sapota, A., Piotrowski, J. K., and Baranski, B., 1974, Metallothionein levels in certain tissues of pregnant rats exposed to mercury vapors, Med. Press 25:192 (Chem. Abstr. 82:26721d).

    CAS  Google Scholar 

  96. Schroeder, H. A., 1966, Essential trace metals in man: Manganese, J. Chron. Dis. 19:573.

    Article  PubMed  CAS  Google Scholar 

  97. Schroeder, H. A., 1973, The Trace Elements and Man, The Devin-Adair Co., Old Greenwich, Connecticut.

    Google Scholar 

  98. Schroeder, H. A., Balassa, J. J., and Tipton, I. H., 1962, Abnormal trace elements in man: Chromium, J. Chron. Dis. 5:941.

    Article  Google Scholar 

  99. Schroeder, H. A., Balassa, J. J., and Tipton, I. H., 1964, Abnormal trace metals in man: Tin, J. Chron. Dis. 17:483.

    Article  PubMed  CAS  Google Scholar 

  100. Schroeder, H. A., Kanisawa, M., Frost, D. V., and Mitchener, M., 1968, Germanium, tin and arsenic in rats: Effects on growth, survival, pathological lesions and life span, J. Nutr. 96:37.

    CAS  Google Scholar 

  101. Schroeder, H. A., Nason, A. P., Tipton, I. H., and Balassa, J. J., 1967, Essential trace metals in man: Zinc. Relation to environmental cadmium, J. Chron. Dis. 20:179.

    Article  PubMed  CAS  Google Scholar 

  102. Schwarz, K., 1974, Recent dietary trace element research, exemplified by tin, fluorine, and silicon, Fed. Proc. Fed. Amer. Soc. Exp. Biol. 33:1748.

    CAS  Google Scholar 

  103. Schwarz, K., 1974, Newer essential trace elements (Sn, V, F, Si): Progress report and outlook, in: Trace Element Metabolism in Animals—2 (W. G. Hoekstra, J. W. Suttie, H. E. Ganther, and W. Mertz, eds.), pp. 355–405, University Park Press, Baltimore.

    Google Scholar 

  104. Schwarz, K., 1976, Essentiality and metabolic functions of selenium, Med. Clin. North Amer., in press.

    Google Scholar 

  105. Schwarz, K., and Foltz, O. M., 1957, Selenium as an integral part of factor 3 against dietary necrotic liver degeneration, J.Amer. Chem. Soc. 79:3292.

    Article  CAS  Google Scholar 

  106. Schwarz, K., Milne, D. B., and Vinyard, E., 1970, Growth effects of tin compounds in rats maintained in a trace element controlled environment, Biochem. Biophys. Res. Commun. 40:22.

    Article  PubMed  CAS  Google Scholar 

  107. Seelig, M. S., 1973, Proposed role of copper-molybdenum interaction in iron-deficiency and iron-storage diseases, Amer. J. Clin. Nutr. 26:657.

    PubMed  CAS  Google Scholar 

  108. Shirley, R. L., Jeter, M. A., Feaster, J. P., McCall, J. T., Cutler, J. C., and Davis, G. K., 1954, Placental transfer of Mo” and Ca45 in swine, J. Nutr. 54:59.

    PubMed  CAS  Google Scholar 

  109. Shokeir, M. H. K., 1971, Investigations on the nature of ceruloplasmin deficiency in the newborn, Clin. Genet. 2:223.

    Article  PubMed  CAS  Google Scholar 

  110. Siimes, M. A., and Dallman, P. R., 1974, New kinetic role for serum ferritin in iron metabolism, Br. J. Haematol. 28:7.

    Article  PubMed  CAS  Google Scholar 

  111. Siimes, M. A., Koerper, M. A., Licko, V., and Dallman, P. R., 1975, Ferritin turnover in plasma: An opportunistic use of blood removed during exchange transfusion, Pediatr. Res. 9:127.

    Article  PubMed  CAS  Google Scholar 

  112. Sirivech, S., Frieden, E., and Osaki, S., 1974, The release of iron from horse spleen ferritin by reduced flavins, Biochem. J. 143:311.

    PubMed  CAS  Google Scholar 

  113. Smith, J. E., Brown, E. D., and Smith, J. C., 1974, The effect of zinc deficiency on the metabolism of retinol-binding protein in the rat, J. Lab. Clin. Med. 84:692.

    PubMed  CAS  Google Scholar 

  114. Smith, R. J., and Contura, J. F., 1974, Cobalt-induced alterations in plasma proteins, proteases, and kinin system of the rat, Biochem. Pharmacol. 23:1095.

    Article  PubMed  CAS  Google Scholar 

  115. Sturgeon, P., and Shoden, A., 1971, Storage iron in normal populations, Amer. J. Clin. Nutr. 24:469.

    PubMed  CAS  Google Scholar 

  116. Sunderman, F. W.,Jr., Decsy, M. I., and McNeely, M. D., 1972, Nickel metabolism in health and disease, Ann. N. Y. Acad. Sci. 199:300.

    Article  PubMed  CAS  Google Scholar 

  117. Suttle, N. F., 1974, The effect of dietary molybdenum on hypocupraemic ewes treated by subcutaneous copper, Vet. Rec. 95:165.

    Article  PubMed  CAS  Google Scholar 

  118. Suttle, N. F., 1974, Recent studies of the copper-molybdenum antagonism, Proc. Nutr. Soc. 33:299.

    Article  PubMed  CAS  Google Scholar 

  119. Taves, D. R., 1968, Electrophoretic mobility of serum fluoride, Nature (London) 220:582.

    Article  CAS  Google Scholar 

  120. Terao, T., and Owen, C. A., Jr:, 1974, Copper in supernatant fractions of various rat tissues, Mayo Clin. Proc. 49:376.

    Google Scholar 

  121. Tipton, I. H., and Cook, M. J., 1963, Trace elements in human tissue. Part II. Adult subjects from the United States, Health Phys. 9:89.

    Article  PubMed  CAS  Google Scholar 

  122. Tuman, R. W., and Doisy, R. J., 1975, The role of trace elements in human nutrition and metabolism, in: Physiological Effects of Food Carbohydrates (A. Jeanes and J. Hodges, eds.), pp. 156–178, American Chemical Society, Washington, D.C.

    Chapter  Google Scholar 

  123. Underwood, E. J., 1971, Trace Elements in Human and Animal Nutrition, Academic Press, New York.

    Google Scholar 

  124. Vallée, B. L., 1954, Serum copper in patients recovering from myocardial infarction, Metabolism 1:420.

    Google Scholar 

  125. Varma, R., Varma, R. S., Allen, W. S., and Wardi, A. H., 1974, On carbohydrate protein linkage groups in vitreous humor hyaluronate, Biochem. Biophys. Acta 362:584.

    Article  PubMed  CAS  Google Scholar 

  126. Vulimiri, L., Linder, M. C., Munro, H. N., and Catsimpoolas, N., 1977, Structural features of rat cardiac ferritins, Biochem. Biophys. Acta 491:67–75.

    PubMed  CAS  Google Scholar 

  127. Weinberg, E. D., 1974, Iron and susceptibility to infectious disease, Science 172:952.

    Article  Google Scholar 

  128. Whanger, P. D., Pederson, N. D., and Weswig, P. H., 1973, Selenium proteins in ovine tissues II. Spectral properties of a 10,000 molecular weight selenium protein, Biochem. Biophys. Acta 53:1031.

    CAS  Google Scholar 

  129. Wheby, M. S., and Crosby, W. H., 1963, Gastrointestinal tract and iron absorption, Blood 22:416.

    PubMed  CAS  Google Scholar 

  130. White, A., Handler, P., and Smith, E. L., 1973, Principles of Biochemistry (5th Ed.), McGraw-Hill, New York.

    Google Scholar 

  131. Widdowson, E. M., 1969, Trace elements in human development, in: Mineral Metabolism in Paediatrics, pp. 85–97, Blackwell Scientific Publications, Oxford.

    Google Scholar 

  132. Widdowson, E. M., and Spray, C. W., 1950, Chemical development in utero, Arch. Dis. Child. 5:205.

    Google Scholar 

  133. Widdowson, E. M., Dauncy J., and Shaw, J. C. L., 1974, Trace elements in fetal and early postnatal development, Proc. Nutr. Soc. 33:275.

    Article  PubMed  CAS  Google Scholar 

  134. Wintrobe, M. M., Cartwright, G. E., and Gubler, C. J., 1953, Studies on the function and metabolism of copper, J. Nutr. 50:395.

    PubMed  CAS  Google Scholar 

  135. Wolff, H. P., 1956, Untersuchungen zur Pathophysiologie des Zincstoffwechsels, Klin. Wochenschr. 15:409.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Publishing Corporation

About this chapter

Cite this chapter

Linder, M.C. (1978). Functions and Metabolism of Trace Elements. In: Stave, U. (eds) Perinatal Physiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2316-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2316-7_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2318-1

  • Online ISBN: 978-1-4684-2316-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics