Carbohydrate Metabolism and the Regulation of Blood Glucose

  • F. John Ballard


Many differences in carbohydrate metabolism in the fetus, newborn, and adult are related to the changing nutritional environment of the various ages. The fetus is characterized by having a constant and plentiful supply of glucose, which, except in ungulates, is not normally accompanied by other hexoses. The newborn, on the other hand, obtains only small amounts of glucose due to the low carbohydrate content of milk. There is therefore a changeover at birth from a high-carbohydrate to a high-fat diet, and many of the alterations in metabolic pathways can be interpreted in this context. I would also like to emphasize that although the relative importance of carbohydrate as a nutrient for adults will differ among herbivorous, carnivorous, and omnivorous mammals, and will be apparent from measurements of pathway activities, only minor nutritional differences are seen when interspecies comparisons are made between fetuses or neonates. Accordingly, the observations made on fetal and newborn experimental animals can often be extrapolated to the human infant. Where differences have been noted, attention will be drawn to them.


Fetal Liver Human Infant Glycogen Storage Disease Pyruvate Carboxylase Phosphoenolpyruvate Carboxykinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adam, P. A. J., 1971, Control of glucose metabolism in the human fetus and newborn infant, Adv. Metab. Disord. 5:183.PubMedGoogle Scholar
  2. 2.
    Agranoff, B. W., Brady, R. O., and Colodzin, M., 1954, Differential conversion of specifically labelled glucose to C14O2, J. Biol. Chem. 211:773.PubMedGoogle Scholar
  3. 3.
    Andrews, W. H. H., Britton, H. G., Huggett, A. St. G., and Nixon, D. A., 1960, Fructose metabolism in the isolated perfused liver of the foetal and newborn sheep, J. Physiol. 153:199.Google Scholar
  4. 4.
    Baker, L., and Winegrad, A., 1970, Fasting hypoglycemia and metabolic acidosis associated with deficiency of hepatic fructose-1,6-diphosphatase activity, Lancet 2:13.PubMedCrossRefGoogle Scholar
  5. 5.
    Ballard, F. J., 1966, Kinetic studies with liver galactokinase, Biochem. J. 101:70.PubMedGoogle Scholar
  6. 6.
    Ballard, F. J., 1971, The development of glucon-eogenesis in rat liver. Controlling factors in the newborn, Biochem. J. 124:265.PubMedGoogle Scholar
  7. 7.
    Ballard, F. J., and Oliver, I. T., 1963, Glycogen metabolism in embryonic chick and neonatal rat liver, Biochim. Biophys. Acta 71:578.PubMedCrossRefGoogle Scholar
  8. 8.
    Ballard, F. J., and Oliver, I. T., 1965, Carbohydrate metabolism in liver from fetal and neonatal sheep, Biochem. J. 95:191.PubMedGoogle Scholar
  9. 9.
    Ballard, F. J., and Philippidis, H., 1971, The development of gluconeogenic function in rat liver, in: Regulation of Gluconeogenesis (H.-D. Soling and B. Williams, eds.), pp. 66–81, Georg Thieme Verlag, Stuttgart.Google Scholar
  10. 10.
    Bertoli, D., and Segal, D., 1966, Developmental aspects and some characteristics of mammalian galactose 1-phosphate uridyltransferase, J. Biol. Chem. 241:4023.PubMedGoogle Scholar
  11. 11.
    Bernard, C., 1859, De la matière glycogène considérée comme condition du développement de certain tissus, chez le foetus, avant l’apparition de la fonction glycogénique du foie, C. R. Acad. Sci. 48:673.Google Scholar
  12. 12.
    Beyreiss, K., 1971, Untersuchungen über den Umsatz von Galaktose Neugeborener, Säuglinge und Erwachsener bei intravenöser Galaktoseinfusion, Acta Biol. Med. Ger. 27:125.PubMedGoogle Scholar
  13. 13.
    Beyreiss, K., and Rautenbach, M., 1974, Utilization and turnover rate of fructose during continuous infusion in pre-term and term newborns in dependence on age, Biol. Neonate 24:330.PubMedCrossRefGoogle Scholar
  14. 14.
    Bode, J. C., Bode, C., Rumpelt, H. J., and Zelder, O., 1974, Loss of hepatic adenosine phosphates and metabolic consequences following fructose or sorbitol administration in man and in the rat, in: Regulation of Hepatic Metabolism (F. Lundquist and N. Tygstrup, eds.), pp. 267–281, Munksgaard, Copenhagen.Google Scholar
  15. 15.
    Burch, H. B., Lowry, O. H., Kuhlman, A. M., Skerjance, J., Diamant, E. J., Lowry, S. R., and Vôn Dippe, P., 1963, Changes in patterns of enzymes of carbohydrate metabolism in the developing rat liver, J. Biol. Chem. 238:2267.PubMedGoogle Scholar
  16. 16.
    Ciampolini, M., and Franchini, F., 1966, Modifications of lactate metabolism in the first month of life: Intravenous loading tests of DL-lactate in premature newborn infants, Ann. Paediatr. 207:335.PubMedGoogle Scholar
  17. 17.
    Cohen, N. M., and Turner, R. C., 1972, Plasma insulin in the foetal rat, Biol. Neonate 21:107.PubMedCrossRefGoogle Scholar
  18. 18.
    Cohn, R. M., and Segal, S., 1973, Galactose metabolism and regulation, Metabolism 22:627.PubMedCrossRefGoogle Scholar
  19. 19.
    Cori, G. T., and Schulman, J. L., 1954, Glycogen storage disease of the liver. II. Enzymic studies, Pediatrics 14:646.PubMedGoogle Scholar
  20. 20.
    Cornblath, M., and Schwartz, R., 1966, Disorders of Carbohydrate Metabolism in Infancy, W. B. Saunders, Philadelphia.Google Scholar
  21. 21.
    Crane, R. K., and Sols, A., 1955, Animal tissue hexokinases, Methods Enzymol. 1:277.CrossRefGoogle Scholar
  22. 22.
    Cuatrecasas, P., and Segal, S., 1965, Mammalian galactokinase: Developmental and adaptive characteristics in the rat liver, J. Biol. Chem. 240:2382.PubMedGoogle Scholar
  23. 23.
    Dawkins, M.J. R., 1959, Respiratory enzymes in the liver of the newborn rat, Proc. R. Soc. London Ser. B 150:284.CrossRefGoogle Scholar
  24. 24.
    Dawkins, M. J. R., 1966, Biochemical aspects of developing function in newborn mammalian liver, Br. Med. Bull. 22:27.PubMedGoogle Scholar
  25. 25.
    Devos, P., and Hers, H. G., 1974, Glycogen metabolism in the liver of the foetal rat, Biochem. J. 140:331.PubMedGoogle Scholar
  26. 26.
    Donnell, G. N., Ng, W. G., Hodgman, J. E., and Bergren, W. R., 1967, Galactose metabolism in the newborn infant, Pediatrics 39:829.PubMedGoogle Scholar
  27. 27.
    Eisen, H. J., Goldfine, I. D., and Glinsmann, W. H., 1973, Regulation of hepatic glycogen synthesis during fetal development: Roles of hydrocortisone, insulin, and insulin receptors, Proc. Natl. Acad. Sci. U.S.A. 70:3454.PubMedCrossRefGoogle Scholar
  28. 28.
    Favard, P., and Jost, A., 1966, Différenciation et charge en glycogène de l’hépatocyte du foetus de rat normal ou décapité, Arch. Anat. Microsc. Morphol. Exp. 55:603.PubMedGoogle Scholar
  29. 29.
    Fernandes, J., and Blom, W., 1974, The intravenous L-alanine tolerance test as a means for investigating gluconeogenesis, Metabolism 23:1149.PubMedCrossRefGoogle Scholar
  30. 30.
    François, R., Picaud, J. J., Ruitton-Ugliengo, A., David, L., Cartal, M. J., and Bauer, D., 1974, The newborn of diabetic mothers, observations on 154 cases, 1958–1972, Biol. Neonate 24:1.PubMedCrossRefGoogle Scholar
  31. 31.
    Froesch, E. R., Wolf, N. P., Baitsch, N. Prader, A., and Labhart, A., 1963, Hereditary fructose intolerance. An inborn defect of fructose- 1-phos-phate splitting aldolase, Amer. J. Med. 34:151.PubMedCrossRefGoogle Scholar
  32. 32.
    Garber, A. J., and Ballard, F. J., Unpublished experiments.Google Scholar
  33. 33.
    Girard, J., Bal, D., and Assan, R., 1972, Glucagon secretion during the early postnatal period in the rat, Horm. Metab. Res. 4:168.PubMedCrossRefGoogle Scholar
  34. 34.
    Goodwin, R. F. W., 1956, Division of the common mammals into two groups according to the concentration of fructose in the blood of the foetus, J. Physiol. 132:146.PubMedGoogle Scholar
  35. 35.
    Greengard, D., and Dewey, H. K., 1970, The premature deposition or lysis of glycogen in livers of fetal rats injected with hydrocortisone or glucagon, Dev. Biol. 21:452.PubMedCrossRefGoogle Scholar
  36. 36.
    Gresham, E. L., James, E. J., Raye, J. R., Battaglia, F. C., Makowski, E. L., and Meschia, G., 1972, Production and excretion of urea by the fetal lamb, Pediatrics 50:372.PubMedGoogle Scholar
  37. 37.
    Grossbard, L., and Schimke, R. T., 1966, Multiple hexokinases of rat tissues. Purification and comparison of soluble forms, J. Biol. Chem. 241:3546.PubMedGoogle Scholar
  38. 38.
    Hanson, R. W., Fisher, L., Ballard, F. J., and Reshef, L., 1973, The regulation of phosphoenol-pyruvate carboxykinase in fetal rat liver, Enzyme 15:97.PubMedGoogle Scholar
  39. 39.
    Hers, H. G., 1960, Le mécanisme de la formation du, fructose seminal et du fructose foetal, Biochim. Biophys. Acta 37:127.PubMedCrossRefGoogle Scholar
  40. 40.
    Hers, H. G., De Wulf, H., and Stalmans, W., 1970, The control of glycogen metabolism in the liver, FEBS Lett. 12:73.PubMedCrossRefGoogle Scholar
  41. 41.
    Holt, P. G., and Oliver, I. T., 1968, Plasma corti-costerone concentrations in the perinatal rat, Biochem. J. 108:339.PubMedGoogle Scholar
  42. 42.
    Hommes, F. A., Polman, H. A., and Reerink, J. D., 1968, Leigh’s encephalomyelopathy: An inborn error of gluconeogenesis, Arch. Dis. Child. 43:423.PubMedCrossRefGoogle Scholar
  43. 43.
    Jamdar, S. C., and Greengard, O., 1970, Premature formation of glucokinase in developing rat liver, J.Biol. Chem. 245:2779.PubMedGoogle Scholar
  44. 44.
    James, E., Meschia, G., and Battaglia, F. C., 1971, A-V differences of free fatty acids and glycerol in the ovine umbilical circulation, Proc. Soc. Exp. Biol. Med. 138:823.PubMedGoogle Scholar
  45. 45.
    Johnson, J. D., Kretchmar, N., and Simoons, F. J., 1974, Lactose malabsorption. Its biology and history Adv.Pediatr. 21:197.PubMedGoogle Scholar
  46. 46.
    Jost, A., and Picon, L., 1970, Hormonal control of fetal development and metabolism, Adv. Metab. Disord. 4:123.PubMedGoogle Scholar
  47. 47.
    Katz, J., Landau, B. R., and Bartson, G. E., 1966, The pentose cycle, triosephosphate, isomerization and lipogenesis in rat adipose tissue, J. Biol. Chem. 241:727.PubMedGoogle Scholar
  48. 48.
    Lardy, H. A., Personal communication.Google Scholar
  49. 49.
    Lea, M. A., and Walker, D. G., 1965, Factors affecting hepatic glycolysis and some changes that occur during development, Biochem. J. 94:655.PubMedGoogle Scholar
  50. 50.
    McCann, M. L., Chen, C. H., Katigbak, E. B., Kotchen, J. M., Likly, B. F., and Schwartz, R., 1966, Effects of fructose on hypoglucosemia in infants of diabetic mothers, N. Engl. J. Med. 275:1.PubMedCrossRefGoogle Scholar
  51. 51.
    Mercier, C., and Whelan, W. J., 1973, Further characterization of glycogen from type-IV glycogen-storage disease, Eur. J. Biochem. 40:221.PubMedCrossRefGoogle Scholar
  52. 52.
    Middleton, M. C., and Walker, D. G., 1972, Comparison of the properties of two forms of pyruvate kinase in rat liver and determination of their separate activities during development, Biochem. J. 127:721.PubMedGoogle Scholar
  53. 53.
    Monteleone, J. A., Beutler, E., Monteleone, P. L., Utz, C. L. L., and Casey, E. C., 1971, Cataracts, galactosuria and hypergalactosemia due to galactokinase deficiency in a child. Studies of a kindred, Amer. J. Med. 50:403.PubMedCrossRefGoogle Scholar
  54. 54.
    Moses, S. W., and Gutman, A., 1972, Inborn errors of glucose metabolism, Adv. Pediatr. 19:95.Google Scholar
  55. 55.
    Newsholme, E. A., and Start, C., 1973, Regulation in Metabolism, pp. 247–292, John Wiley, London.Google Scholar
  56. 56.
    Novak, E., Drummond, G. I., Skala, J., and Hahn, P., 1972, Developmental changes in cyclic AMP, protein kinase, Phosphorylase kinase, and Phosphorylase in liver, heart, and skeletal muscle of the rat, Arch. Biochem. Biophys. 150:511.PubMedCrossRefGoogle Scholar
  57. 57.
    Otey, E., Stenger, V., Eitzman, D., and Prystowsky, H., 1967, Further observations on the relationships of pyruvate and lactate in human pregnancy, Amer. J. Obstet. Gynecol. 97:1076.Google Scholar
  58. 58.
    Partridge, N. C., Hoh, C. H., Weaver, P. K., and Oliver, I. T., 1975, Premature induction of glucokinase in the neonatal rat by thyroid hormone, Eur. J. Biochem. 51:49.PubMedCrossRefGoogle Scholar
  59. 59.
    Philippidis, H., and Ballard, F. J., 1970, The development of gluconeogenesis in rat liver. Effects of glucagon and ether, Biochem. J. 120:385.PubMedGoogle Scholar
  60. 60.
    Philippidis, H., Hanson, R. W., Reshef, L., Hopgood, M. F., and Ballard, F. J., 1972, The initial synthesis of proteins during development. Phosphoenolpyruvate carboxykinase in rat liver at birth, Biochem. J. 126:1127.PubMedGoogle Scholar
  61. 61.
    Pribylova, H., and Novak, L., 1970, Influence of environmental temperature on the energetic and gly-cide metabolism of pathological newborns during the first three hours of life, Biol. Neonate 15:315.PubMedCrossRefGoogle Scholar
  62. 62.
    Raihä, N. C. R., and Lindros, K. O. 1969, Development of some enzymes involved in gluconeo-genesis in human liver, Ann. Med. Exp. Biol. Fenn. 47:146.PubMedGoogle Scholar
  63. 63.
    Raivio, K. O., and Seegmiller, J. E., 1972, Genetic diseases of metabolism, Annu. Rev. Biochem. 41:543.PubMedCrossRefGoogle Scholar
  64. 64.
    Schapira, F., Nordman, Y., and Gregori, C., 1972, Hereditary alterations of fructose metabolizing enzymes. Studies on essential fructosuria and on hereditary fructose intolerance, Acta Med. Scand. Suppl. 542:77.PubMedGoogle Scholar
  65. 65.
    Schwartz, A. L., and Rall, T. W., 1973, Hormonal regulation of glycogen metabolism in neonatal rat liver, Biochem. J. 134:985.PubMedGoogle Scholar
  66. 66.
    Scrutton, M. C., and Utter, M. F., 1968, The regulation of glycolysis and gluconeogenesis in animal tissues, Annu. Reu. Biochem. 37:249.CrossRefGoogle Scholar
  67. 67.
    Segal, S., Roth, H., and Bertoli, D., 1963, Galactose metabolism by rat liver tissue: Influence of age, Science 142:1311.PubMedCrossRefGoogle Scholar
  68. 68.
    Shelley, H. J., 1961, Glycogen reserves and their changes at birth and in anoxia, Br. Med. Bull. 17:137.Google Scholar
  69. 69.
    Shelley, H. J., and Neligan, G. A., 1966, Neonatal hypoglycaemia, Br. Med. Bull. 22:34.PubMedGoogle Scholar
  70. 70.
    Snell, K., and Walker, D. G., 1973, Glucose metabolism in the newborn rat. Temporal studies in vivo, Biochem. J. 132:739.Google Scholar
  71. 71.
    Sperling, M. A., DeLamater, P. V., Phelps, D., Fiser, R. H., Oh, W., and Fisher, D. A., 1974, Spontaneous and amino acid-stimulated glucagon secretion in the immediate postnatal period, relation to glucose and insulin, J. Clin. Invest. 53:1159.PubMedCrossRefGoogle Scholar
  72. 72.
    Steinke, J., and Driscoll, S. G., 1966, The extract-able insulin contents of pancreas from fetuses and infants of diabetic and control mothers, Diabetes 14:573.Google Scholar
  73. 73.
    Tanaka, T., Harano, Y., Morimura, H., and Mori, R., 1965, Evidence for the presence of two types of pyruvate kinase in rat liver, Biochem. Biophys. Res. Commun. 21:55.PubMedCrossRefGoogle Scholar
  74. 74.
    Thurston, J. H., Jones, E. M., and Hauhart, R. E., 1974, Decrease and inhibition of liver glycogen Phosphorylase after fructose. An experimental model for the study of hereditary fructose intolerance, Diabetes 23:597.PubMedGoogle Scholar
  75. 75.
    Tildon, J. T., Swiatek, K. R., and Cornblath, M., 1971, Phosphoenolpyruvate carboxykinase in the developing pig liver, Biol. Neonate 17:436.PubMedCrossRefGoogle Scholar
  76. 76.
    Tsoulos, N. G., Colwill, J. R., Battaglia, F. C., Makowski, E. L„ and Meschia, G., 1971, Comparison of glucose, fructose and O2 uptakes by fetuses of fed and starved ewes, Amer. J. Physiol. 221:234.PubMedGoogle Scholar
  77. 77.
    Tygstrup, N., and Winkler, K., 1958, Galactose blood clearance as a measure of hepatic blood flow, Clin. Sci. 17:1.PubMedGoogle Scholar
  78. 78.
    Vaillant, R., and Jost, A., 1971, Influence des corticostéroides sur le glycogène particulaire du foie foetal de rat, Biochimie 53:797.PubMedCrossRefGoogle Scholar
  79. 79.
    Villee, C. A., and Hagerman, D. D., 1958, Effect of oxygen deprivation on the metabolism of fetal and adult tissues, Amer. J. Physiol. 194:457.PubMedGoogle Scholar
  80. 80.
    Villee, C. A., and Loring, J. M., 1961, Alternative pathways of carbohydrate metabolism in foetal and adult tissues, Biochem. J. 81:488.PubMedGoogle Scholar
  81. 81.
    Villee, C. A., Hagerman, D. D., Holmberg, N., Lind, J., and Villee, D. B., 1958, The effects of anoxia on the metabolism of fetal tissues, Pediatrics 22:953.PubMedGoogle Scholar
  82. 82.
    Walker, D. G., 1963, On the presence of two soluble glucose-phosphorylating enzymes in adult liver and the development of one of these after birth, Biochim. Biophys. Acta. 77:209.PubMedCrossRefGoogle Scholar
  83. 83.
    Walker, D. G., 1968, Development of carbohydrate metabolism, in: Carbohydrate Metabolism and Its Disorders, Vol. 1 (F. Dickens, P. J. Rändle and W. J. Whelan, eds.), pp. 465–496, Academic Press, London.Google Scholar
  84. 84.
    WArnes, D. M., Seamark, R. F., and Ballard, F. J., 1977, The appearance of gluconeogenesis at birth in sheep. Activation of the pathway associated with blood oxygenation, Biochem. J. 162:627.PubMedGoogle Scholar
  85. 85.
    Williamson, J. R., and Browning, E. T., 1969, Control mechanisms of gluconeogenesis and keto-genesis. 2. Interactions between fatty acid oxidation and the citric acid cycle in perfused rat liver, J. Biol. Chem. 244:4617.PubMedGoogle Scholar
  86. 86.
    Woods, H. F., Eggleston, L. V., and Krebs, M. A., 1970, The cause of hepatic accumulation of fructose 1-phosphate on fructose loading, Biochem. J. 119:501.PubMedGoogle Scholar
  87. 87.
    Yeung,D., and Oliver, I. T., 1968, Factors affecting the premature induction of phosphopyruvate carboxylase in neonatal rat liver, Biochem. J. 108:325.PubMedGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • F. John Ballard
    • 1
  1. 1.Division of Human NutritionCSIROAdelaideAustralia

Personalised recommendations