Respiratory Gas Transport Characteristics of Blood and Hemoglobin

  • Klaus P. Riegel
  • Hans T. Versmold

Abstract

Hemoglobin is needed to supply the tissues with oxygen and to facilitate carbon dioxide transport in exchange; in addition, it acts as an important buffer in the extracellular compartment. Close interaction exists between oxygen and carbon dioxide binding and the buffering capacity. In this chapter, age-dependent differences and their physiological relevance will be discussed. Also, some clinical data will be used to put physiological data in perspective with perinatology. Chapters 6 and 11 provide supplemental information.

Keywords

Anemia Carbon Monoxide Bicarbonate Bilirubin Androgen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrahamov, A., and Smith, C. A., 1959, Oxygen capacity and affinity of blood from erythroblastotic newborns, Amer. J. Dis. Child. 97:375–379.Google Scholar
  2. 2.
    Adamson, J. W., Parer, J. T., and Stamatoyannopoulos, G., 1969, Erythrocytosis associated with hemoglobin Rainier: Oxygen equilibria and marrow regulation, J. Clin. Invest. 48:1376–1386.PubMedCrossRefGoogle Scholar
  3. 3.
    Agostoni, A., Berfasconi, C., Gerli, G. C., Luzzano, M., and Rossi-Bernardi, L., 1973, Oxygen affinity and electrolyte distribution of human blood: Changes induced by propranolol, Science 182:300–301.PubMedCrossRefGoogle Scholar
  4. 4.
    Allen, D. W., Wymann, J., and Smith, C. A., 1953, The oxygen equilibrium of fetal and adult hemoglobin, J. Biol. Chem. 203:81–87.PubMedGoogle Scholar
  5. 5.
    Alvarez, P. A., and Mateu, V. S., 1974, Hemoglobin level in the human fetus and its relation to the acid-base status and other fetal-material parameters, Z. Geburtshilfe Perinatol. 178:285–296.PubMedGoogle Scholar
  6. 6.
    Antonini, E., and Brunori, M., 1971, Hemoglobin and myoglobin in their reactions with ligands, North-Holland Publishing, Amsterdam and Oxford.Google Scholar
  7. 7.
    Antonini, E., Wyman, J., Brunori, M., Bucci, E., Fronticelli, C., and Rossi-Fanelli, A., 1963, Studies on the relations between molecular and functional properties of hemoglobin. IV. The Bohr effect in human hemoglobin measured by proton binding, J. Biol. Chem. 238:2950–2957.PubMedGoogle Scholar
  8. 8.
    Arczynska, W., 1973, A further study of the metabolic buffer value and the Bohr effect in human fetal whole blood, Pediatr. Res. 7:996–1000.PubMedCrossRefGoogle Scholar
  9. 9.
    Arczynska, W., and Prod’hom, L. S., 1973, The buffer values and the Bohr effect of human fetal and adult whole blood in vitro in an acid range, Pediatr. Res. 7:126–131.PubMedCrossRefGoogle Scholar
  10. 10.
    Asakura, T., Sato, Y., Minakami, S., and Yoshikawa, H., 1966, pH dependency of 2,3-diphos-phoglycerate in red blood cells, Clin. Chim. Acta 14:840–841.CrossRefGoogle Scholar
  11. 11.
    Astrup, P., Engel, K., Severinghaus, J. W., and Munson, E., 1965, The influence of temperature and pH on the dissociation curve of oxyhemoglobin of human blood, Scand. J. Clin. Lab. Invest. 17:515–523.PubMedCrossRefGoogle Scholar
  12. 12.
    Barcroft, J., 1928, The Respiratory Function of the Blood, Part II: Haemoglobin, Cambridge University Press, Oxford.Google Scholar
  13. 13.
    Bartels, H., 1959, Chemical factors affecting oxygen carriage and transfer from maternal to foetal blood, in: Oxygen Supply to the Human Foetus, Blackwell, Scientific Publications, Oxford.Google Scholar
  14. 14.
    Bartels, H., and Wulf, H., 1965, Physiologie des Gasaustausches in der Placenta des Menschen, in: Fortschritte der Pädologie (F. Linneweh, ed.), pp. 124–146, Springer-Verlag, Berlin-Heidelberg-New York.Google Scholar
  15. 15.
    Battaglia, F. C., Bowes, W., McGaughey, H. R., Makowski, E. L., and Meschia, G., 1969, The effect of fetal exchange transfusions with adult blood upon fetal oxygenation, Pediatr. Res. 3:60–65.PubMedCrossRefGoogle Scholar
  16. 16.
    Battaglia, F. C., McGaughey, H., Makowski, E. L., and Meschia, G., 1970, Postnatal changes in oxygen affinity of sheep red cells: A dual role of diphosphoglyceric acid, Amer. J. Physiol. 219:217–221.PubMedGoogle Scholar
  17. 17.
    Bauer, C., 1969, Antagonistic influence of CO2 and 2,3-diphosphogly cerate on the Bohr effect of human haemoglobin, Life Sci. 8:1041–1046.PubMedCrossRefGoogle Scholar
  18. 18.
    Bauer, C., 1974, On the respiratory function of haemoglobin, Rev. Physiol. Biochem. Pharmacol. 70:1–31.PubMedCrossRefGoogle Scholar
  19. 19.
    Bauer, C., and Schröder, E., 1972, Carbamino compounds of haemoglobin in human adult and foetal blood, J. Physiol. (London) 227:457–471.Google Scholar
  20. 20.
    Bauer, C., Ludwig, M., Ludwig, I., and Bartels, H., 1969, Factors governing the oxygen affinity of human adult and foetal blood, Respir. Physiol 7:271–277.PubMedCrossRefGoogle Scholar
  21. 21.
    Bellingham, A. J., 1974, The red cell in adaptation to anaemic hypoxia, Clin. Haematol. 3:577–594.Google Scholar
  22. 22.
    Bellingham, A. J., Detter, J. C., and Lenfant, C., 1971, Regulatory mechanisms of hemoglobin oxygen affinity in acidosis and alkalosis, J. Clin. Invest. 50:700–706.PubMedCrossRefGoogle Scholar
  23. 23.
    Benesch, R., and Benesch, R. E., 1967, The effect of organic phosphates from the human erythrocyte on the allosteric properties of hemoglobin, Biochem. Biophys. Res. Commun. 26:162–167.PubMedCrossRefGoogle Scholar
  24. 24.
    Betke, K., 1958, Hämatologie der ersten Lebenszeit, Ergebn. Inn. Med. Kinderheilkd. N.F. 9:437–509.Google Scholar
  25. 25.
    Betke, K., and Rau, H., 1952, Zur Frage der Neigung junger Säuglinge an Methämoglobinämie zu erkranken, Arch. Kinderheilkd. 145:195–202.PubMedGoogle Scholar
  26. 29.
    Beutler, E., and Wood, L., 1969, The in vivo regeneration of red cell 2,3-diphosphoglyceric acid (DPG) after transfusion of stored blood, J. Lab. Clin. Med. 74:300–304.PubMedGoogle Scholar
  27. 27.
    Bohr, C., Hasselbalch, K., and Krogh, A., 1904, Über einen in biologischer Beziehung wichtigen Einfluss, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindung übt, Scand. Arch. Physiol. 16:402–412.Google Scholar
  28. 28.
    Braunitzer, G., Hilse, K., Rudloff, V., and Hilschmann, N., 1964, The hemoglobins, Adv. Protein Chem. 19:1–71.PubMedCrossRefGoogle Scholar
  29. 29.
    Bunn, F. H., and Briehl, R. W., 1970, The interaction of 2,3-diphosphoglycerate with various human hemoglobins, J. Clin. Invest. 49:1088–1095.PubMedCrossRefGoogle Scholar
  30. 30.
    Burman, D., and Morris, A. F., 1974, Cord haemoglobin in low birthweight infants, Arch. Dis. Child. 49:382–385.PubMedCrossRefGoogle Scholar
  31. 31.
    Bursaux, E., Freminet, A., Brossard, Y., and Poyart, C. F., 1973, Exchange transfusion in the neonate with ACD or CPD stored blood, Biol. Neonate 23:123–132.PubMedCrossRefGoogle Scholar
  32. 32.
    Chanutin, A., and Curnish, R. R., 1967, Effect of organic and inorganic phosphate on the oxygen equilibrium of human erythrocytes, Arch. Biochem. Biophys. 121:96–102.PubMedCrossRefGoogle Scholar
  33. 33.
    Chillar, R. K., and Desforges, J. F., 1974, Red-cell organic phosphates in patients with chronic renal failure on maintenance haemodialysis, Brit. J. Haematol. 26:549–556.CrossRefGoogle Scholar
  34. 34.
    Christiansen, J., Douglas, C. G., and Haldine, J. S., 1914, The absorption and dissociation of carbon dioxide by human blood, J. Physiol. (London) 48:244–271.Google Scholar
  35. 35.
    Clauvel, M., and Schwartz, K., 1968, Blood oxygen capacity, Clin. Chem. 14:253–261.PubMedGoogle Scholar
  36. 36.
    Coburn, R. F., Forster, R. E., and Kane, P. B., 1965, Considerations of the physiological variables that determine the blood carboxyhemoglobin concentration in man, J. Clin. Invest. 44:1899–1910.PubMedCrossRefGoogle Scholar
  37. 37.
    Coburn, R. F., Williams, W. J., and Kahn, S. B., 1966, Endogenous carbon monoxide production in patients with hemolytic anemia, J. Clin. Invest. 45:460–468.PubMedCrossRefGoogle Scholar
  38. 38.
    Cornet, A., and Bard, H., 1975, Changes in hemoglobin oxygen affinity in relation to gestational age, Pediatr. Res. 9:276.Google Scholar
  39. 39.
    Delivoria-Papadopoulos, M., Miller, L. D., Tunnessen, W. W., and Oski, F. A., 1972, The effect of exchange transfusion on altering mortality in infants weighing less than 1300 gm at birth and its role in the management of severe respiratory distress syndrome, Proc. Soc. Pediatr. Res. 6:82.Google Scholar
  40. 40.
    Delivoria-Papadopoulos, M., Morrow, G., and Oski, F. A., 1971, Exchange transfusion in the newborn infant with fresh and “old” blood: The role of storage on 2,3-diphosphoglycerate, hemoglobin-oxygen affinity, and oxygen release, J. Pediatr. 79:898–903.PubMedCrossRefGoogle Scholar
  41. 41.
    Delivoria-Papadopoulos, M., Oski, F. A., and Gottlieb, A. J., 1969, Oxygen-hemoglobin dissociation curves: Effect of inherited enzyme defects of the red cell, Science 165:601–602.PubMedCrossRefGoogle Scholar
  42. 42.
    Delivoria-Papadopoulos, M., Roncevic, N. P., and Oski, F. A., 1971, Postnatal changes on oxygen transport of term, preterm, and sick infants: The role of red cell 2,3-diphosphoglycerate and adult hemoglobin, Pediatr. Res. 5:235–245.CrossRefGoogle Scholar
  43. 43.
    Due, G., and Engel, K., 1969, Effect of 2,3-DPG concentration on hemoglobin-oxygen affinity of whole blood, Scand. J. Clin. Lab. Invest. 24:405–412.CrossRefGoogle Scholar
  44. 44.
    Due, G., and Engel, K., 1971, Hemoglobin-oxygen affinity and erythrocyte 2,3-diphosphoglycerate content in hyaline-membrane disease and cardiac malformations, in: Perinatal Medicine (P. J. Huntingford, R. W. Beard, F. E. Hytten, and J. W. Scopes, eds.), pp. 266–268, S. Karger, Basel-München-Paris-London-New York-Sydney.Google Scholar
  45. 45.
    Duhm, J., 1971, Effects of 2,3-diphosphoglycerate and other organic phosphate compounds on oxygen affinity and intracellular pH of human erythrocytes, Pfluegers Arch. 326:341–356.CrossRefGoogle Scholar
  46. 46.
    Duhm, J., Deuticke, B., and Gerlach, E., 1969, Abhängigkeit der 2,3-Diphosphoglyzerinsäure-Synthese in Menschen-Erythrozyten von der ADP-Konzentration, Pfluegers Arch. 306:329–335.CrossRefGoogle Scholar
  47. 47.
    Edwards, M. J., and Canon, B., 1972, Normal levels of 2,3-diphosphoglycerate in red cells despite severe hypoxemia of chronic lung disease, Chest 61:25s.PubMedGoogle Scholar
  48. 48.
    Edwards, M. J., Canon, B., Albertson, J., and Bighley, R. H., 1971, Decreased blood O2 affinity because of young red cells, Clin. Res. 19:179.Google Scholar
  49. 49.
    Edwards, M. J., Now, M. J., Walters, C. L., and Metcalf, J., 1968, Improved oxygen release: An adaptation of mature red cells to hypoxia, J. Clin. Invest. 47:1851–1857.PubMedCrossRefGoogle Scholar
  50. 50.
    Engel, R. R., Rodkey, F. L., and Krill, C. E., 1971, Carboxyhemoglobin levels as an index of hemolysis, Pediatrics 47:723–730.PubMedGoogle Scholar
  51. 51.
    Fällström, S. P., 1968, On the Endogenous Formation of Carbon Monoxide in Full-Term Newborn Infants, Elanders Boktr. Akt., Göteborg.Google Scholar
  52. 52.
    Finne, P. H., and Halvorsen, S., 1972, Regulation of erythropoiesis in the fetus and newborn, Arch. Dis. Child. 47:683–687.PubMedCrossRefGoogle Scholar
  53. 53.
    Flod, N. E., and Ackerman, B. D., 1971, Perinatal asphyxia and residual placental blood volume, Acta Paediatr. Scand. 60:433–436.PubMedCrossRefGoogle Scholar
  54. 54.
    Garby, L. (ed.), 1974, Anaemia and hypoxia, Clin. Haematol. 3(3).Google Scholar
  55. 55.
    Garby, L., Robert, M., and Zaar, B., 1972, Proton- and carbamino-linked oxygen affinity of normal human blood, Acta Physiol. Scand. 84:482–492.PubMedCrossRefGoogle Scholar
  56. 56.
    Gorshein, D., Delivoria-Papadopoulos, M., Oski, F. A., and Gardner, F. H., 1972, The effect of androgen administration on erythrocyte 2,3-diphosphoglycerate level and hemoglobin oxygen affinity in primates, Clin. Res. 20:487.Google Scholar
  57. 57.
    Grauel, E., 1973, Zur Reifung und Alterung von Erythrozyten im I. Trimenon nach der Gubert, Habilitationsschrift, Berlin.Google Scholar
  58. 58.
    Haidas, S., Labie, D., and Kaplan, J. C., 1971, 2,3-Diphosphoglycerate content and oxygen affinity as a function of red cell age in normal individuals, Blood 38:201–207.Google Scholar
  59. 59.
    Harms, H., and Bartels, H., 1961, CO2-Dissozia-tionskurven des menschlichen Blutes bei Temperaturen von 5–37° C bei unterschiedlicher 02-Sätti-gung, Pfluegers Arch. 272:384–392.CrossRefGoogle Scholar
  60. 60.
    Hellegers, A. E., Meschia, G., Prystowsky, H., Wokoff, A. S., and Barron, D. H., 1959, A comparison of the oxygen dissociation curves of the blood of maternal and fetal goats at various pHs, Q.J. Exp. Physiol. 44:215–221.Google Scholar
  61. 61.
    Hill, A. V., 1910, The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves, J. Physiol. (London) 40:IV–VII.Google Scholar
  62. 62.
    Hill, E. P., Power, G. G., and Longo, L. D., 1973, A mathematical model of carbon dioxide transfer in the placenta and its interaction with oxygen, Amer. J. Physiol. 224:283–299.PubMedGoogle Scholar
  63. 63.
    Hjelm, H., 1969, The content of 2,3-diphosphogly-cerate and some other phosphocompounds in human erythrocytes during the neonatal period, Forsvarsmedicin 5:195–198.Google Scholar
  64. 64.
    Joly, J. B., Blayo, M. C., and Gaudebout, C., 1972, Intérêt séméiologique et prognostique de la P50 chez les nouveaunés de moins de 48 heures en détresses vitale, Bull. Physio-Pathol. Respir. 8:1323–1338.Google Scholar
  65. 65.
    Keys, A. F., Hall, G., and Guzman Barron, E. S., 1936, The position of the oxygen dissociation curve of human blood at high altitude, Amer. J. Physiol. 115:292–307.Google Scholar
  66. 66.
    Kilmarttn, J. V., and Rossi-Bernardi, L., 1973, The interaction of hemoglobin with hydrogen ions, carbon dioxide, and organic phosphates, Physiol. Rev. 53:836–922.Google Scholar
  67. 67.
    Kirschbaum, T. H., DeHaven, J. C., Shapiro, N., and Assali, N. S., 1966, Oxyhemoglobin dissociation characteristics of human and sheep maternal and fetal blood, Amer. J. Obstet. Gynecol. 96:741–759.Google Scholar
  68. 68.
    Kleihauer, E., 1966, Fetales Hämoglobin und fetale Erythrocyten, F. Enke, Stuttgart.Google Scholar
  69. 69.
    Kleinman, L. I., Petering, H. G., and Sutherland, J. M., 1967, Blood carbonic anhydrase activity and zinc concentration in infants with respiratory-distress syndrome, N. Engl. J. Med. 277:1157–1161.PubMedCrossRefGoogle Scholar
  70. 70.
    Kravitz, H., Elegant, L. D., Kaiser, E., and Kagan, B. M., 1956, Methemoglobin values in premature and mature infants and children, Amer. J. Dis. Child.. 91:1–5.Google Scholar
  71. 71.
    Kreuzer, F., Roughton, F.J. W., Rossi-Bernardi, L., and Kernohan, J. C., 1972, Specific effect of CO2 and bicarbonate on the affinity of hemoglobin for oxygen, in: Oxygen Affinity of Hemoglobin and Red Cell Acid-Base Status (M. Rorth and P. Astrup, eds.), pp. 208–218, Munksgaard, Copenhagen.Google Scholar
  72. 72.
    Lehmann, H., and Huntsman, R. G., 1974, Man’s Haemoglobins, 3rd Ed., North-Holland Publ. Co., Amsterdam and Oxford.Google Scholar
  73. 73.
    Lehmann, V., 1969, Individuelle Sauerstoff-Bindungskurven und Säure-Basen-Status des mütterlichen und fetalen Blutes zum Zeitpunkt der Geburt, Z. Gebhilfe Gynaekol. 170:14–21.Google Scholar
  74. 74.
    Lehmann, V., 1970, Die O2- Affini tat des fetalen Blutes zu Beginn der EröfFnungsperiode, Arch. Gynaekol. 209:215–221.CrossRefGoogle Scholar
  75. 75.
    Longo, L. D., and Bartels, H. (eds.), 1972, Respiratory Gas Exchange and Blood Flow in the Placenta, U.S. Department of Health, Education and Welfare, Bethesda, Maryland.Google Scholar
  76. 76.
    Maisels, M. J., Pathak, A., Nelson, N. M., Nathan, D. G., and Smith, C. A., 1971, Endogenous production of carbon monoxide in normal and erythroblastotic newborn infants, J. Clin. Invest. 50:1–8.PubMedCrossRefGoogle Scholar
  77. 77.
    Manzke, H., and Dörner, K., 1973, Bohr effect, 2,3-DPG and ATP concentrations in the blood of premature infants with RDS, Biol. Neonate 22:141–154.PubMedCrossRefGoogle Scholar
  78. 78.
    McCarthy, E. F., 1943, The oxygen affinity of human maternal and foetal haemoglobin, J. Physiol. (London) 102:55–61.Google Scholar
  79. 79.
    Meldon, J. H., and Garby, L., 1975, The blood oxygen transport system, Acta Med. Scand. Suppl. 578:19–29.PubMedGoogle Scholar
  80. 80.
    Metcalfe, J., Dhindsa, D. S., Edwards, M. J., and Mourdjinis, A., 1969, Decreased affinity of blood for oxygen in patients with low-output heart failure, Circ. Res. 25:47–56.PubMedGoogle Scholar
  81. 81.
    Miller, M. F., Rϕrth, M., Parving, H. H., Howard, D., Reddington, I., Valeri, C. R., and Stohlman, F., 1973, pH Effect on erythropoietin response to hypoxia, N. Engl. J. Med. 288:706–710.PubMedCrossRefGoogle Scholar
  82. 82.
    Miller, W. W., Delivoria-Papadopoulos, M., Miller, L. D., and Oski, F., 1970, Increased release of oxygen from hemoglobin in hyperthyroidism. Control by red cell 2,3-diphosphoglycerate, J. Amer. Med. Assoc. 211:1824.CrossRefGoogle Scholar
  83. 83.
    Morrow, J. S., Keim, P., Visscher, R. B., Marshall, R. C., and Gurd, F. R. N., 1973, Interaction of 13CO2 and bicarbonate with human hemoglobin preparations, Proc. Natl. Acad. Sci. U.S.A. 70:1414–1418.PubMedCrossRefGoogle Scholar
  84. 84.
    Now, M. J., and Parer, J. T., 1969, Absence of high blood oxygen affinity in the fetal cat, Respir. Physiol. 6:144–150.CrossRefGoogle Scholar
  85. 85.
    Now, M. J., Edwards, M. J., and Metcalf, J., 1967, Hemoglobin Yakima. II. High blood oxygen affinity associated with compensatory erythrocytosis and normal hemodynamics, J. Clin. Invest. 46:1848–1854.CrossRefGoogle Scholar
  86. 86.
    Novy, M. J., Frigoletto, F. D., Easterday, C. L., Umansky, I., and Nelson, N. M., 1971, Changes in umbilical-cord blood oxygen affinity after intrauterine transfusions for erythroblastosis, N. Engl. J. Med. 285:589–595.PubMedCrossRefGoogle Scholar
  87. 87.
    Orzalesi, M. M., and Hay, W. W., 1971, The regulation of oxygen affinity of fetal blood. I. In vitro experiments and results in normal infants, Pediatrics 48:857–864.PubMedGoogle Scholar
  88. 88.
    Orzalesi, M. M., and Hay, W. W., 1972, The relative effect of 2,3-diphosphoglycerate on the oxygen affinity of fetal and adult hemoglobin in whole blood, Experientia 28:1480, 1481.PubMedCrossRefGoogle Scholar
  89. 89.
    Orzalesi, M. M., and Hay, W. W., 1975, The effect of intrauterine anemia on the oxygen affinity of fetal blood, Pediatr. Res. 9:369.Google Scholar
  90. 90.
    Oski, F. A., 1972, Fetal hemoglobin, the neonatal red cell, and 2,3-diphosphoglycerate, Pediatr. Clin. North Amer. 19:907–917.Google Scholar
  91. 91.
    Oski, F. A., and Delivoria-Papadopoulos, M., 1970, The red cell, 2,3-diphosphoglycerate, and tissue oxygen release, J. Pediatr. 77:941–956.PubMedCrossRefGoogle Scholar
  92. 92.
    Oski, F. A., Gottlieb, A. J., Miller, W. W., and Delivoria-Papadopoulos, M., 1970, The effect of deoxygenation of adult and fetal hemoglobin on the synthesis of red cell 2,3-DPG and its in vivo consequences, J. Clin. Invest. 49:400–407.PubMedCrossRefGoogle Scholar
  93. 93.
    Oski, F. A., Miller, L. D., Delivoria-Papadopoulos, M., Manchester, J. H., and Shelburne, J. C., 1972, Oxygen affinity in red cells: Changes induced in vivo by propranolol, Science 175: 1372–1374.PubMedCrossRefGoogle Scholar
  94. 94.
    Oski, F. A., Sugerman, H. D., and Miller, L. D., 1972, Experimentally induced alterations in the affinity of hemoglobin for oxygen. I. In vitro restoration of erythrocyte 2,3-diphosphoglycerate and its relationship to erythrocyte purine nucleoside Phosphorylase activity in a variety of species, Blood 39:522–525.PubMedGoogle Scholar
  95. 95.
    Oski, F. A., Travis, S. F., Miller, L. D., Delivoria-Papadopoulos, M., and Cannon, E., 1971, The in vitro restoration of red cell 2,3-diphosphoglycerate levels in banked blood, Blood 37:52–57.PubMedGoogle Scholar
  96. 96.
    Ostrea, E. M., and Odell, G. B., 1974, Photosensitized shift in the O2 dissociation curve of fetal blood, Acta Paediatr. Scand. 63:341–346.PubMedCrossRefGoogle Scholar
  97. 97.
    Pantlitschko, M., Roberg, E., Weippl, G., and Bauer, P., 1970, Normalwerte und Verteilung von Hämoglobin beim Neugeborenen, Wien. Klin. Wochenschr. 82:785–787.PubMedGoogle Scholar
  98. 98.
    Parer, J. T., 1970, Oxygen transport in human subjects with hemoglobin variants having altered oxygen affinity, Respir. Physiol. 9:43–49.PubMedCrossRefGoogle Scholar
  99. 99.
    Parker, J. P., Beirne, G. J., Desai, J. N., Raich, P. C., and Shahidi, N. T., 1972, Androgen induced increase in red cell 2,3-diphosphoglycerate, N. Engl. J. Med. 287:381–383.PubMedCrossRefGoogle Scholar
  100. 100.
    Pendleton, R. G., Newman, D.-J., Sherman, S. S., Brann, E. G., and Maya, W. E., 1972, Effect of propranolol upon the hemoglobin-oxygen dissociation curve, J. Pharmacol. Exp. Ther. 180:647–651.PubMedGoogle Scholar
  101. 101.
    Perutz, M. F., 1970, Stereochemistry of cooperative effects in haemoglobin, Nature (London) 228:726–739.Google Scholar
  102. 102.
    Perutz, M. F., 1972, Nature of haem-haem interaction, Nature (London) 237:495–499.CrossRefGoogle Scholar
  103. 103.
    Petrich, C., Gempp-Friedrich, W., and Göbel, U., 1973, Comparative measurements of enzyme activities and 2,3-diphosphoglycerate in the erythrocytes of newborns with and without transitory hyperbili-rubinaemia, Acta Paediatr. Scand. 62:596–600.PubMedCrossRefGoogle Scholar
  104. 104.
    Petrich, C., Göbel, U., and Blanke, H., 1974, Position of the oxygen dissociation curve in newborns with transitory hyperbilirubinaemia, Biol. Neonate 24:89–93.PubMedCrossRefGoogle Scholar
  105. 105.
    Rapoport, S., and Guest, G. M., 1941, Distribution of acid-soluble phosphorus in the blood cells of various vertebrates, J. Biol. Chem. 138:269–282.Google Scholar
  106. 106.
    Riegel, K., 1965, Die Atemgas-Transportgrößen des Blutes im Kindesalter, in: Fortschritte der Pädologie (F. Linneweh, ed.), pp. 147–154, Springer-Verlag, Berlin—Heidelberg—New York.Google Scholar
  107. 107.
    Riegel, K. P., 1970, Respiratory gas transport characteristics of blood and hemoglobin, in: Physiology of the Neonatal Period (U. Stave, ed.), pp. 299–321, Appleton-Century-Crofts, New York.Google Scholar
  108. 108.
    Riegel, K., 1977, unpublished data.Google Scholar
  109. 109.
    Riegel, K. P., and Versmold, H., 1973, Postnatal blood oxygen transport, with special respect to idiopathic respiratory distress syndrome, Bull. Physio-Pathol. Respir. 9:1533–1548.Google Scholar
  110. 110.
    Riggs, A., 1965, Functional properties of hemoglobin, Physiol. Rev. 45:619–673.PubMedGoogle Scholar
  111. 111.
    Rodriguez, J. M., and Shahidi, N. T., 1971, Erythrocyte 2,3-DPG in adaptive red-cell-volume deficiency, N. Engl. J. Med. 285:479–482.PubMedCrossRefGoogle Scholar
  112. 112.
    Rörth, M., 1970, Dependency on acid-base status of blood of oxyhemoglobin dissociation and 2,3-DPG level in human erythrocytes. I. In vitro studies on reduced and oxygenated blood, Scand. J. Clin. Lab. Invest. 26:43–46.PubMedCrossRefGoogle Scholar
  113. 113.
    Rϕrth, M., 1974, Hypoxia, red cell oxygen affinity and erythropoietin production, Clin. Haematol. 3:595–607.Google Scholar
  114. 114.
    Rϕrth, M, and Astrup, P. (eds.), 1972, Oxygen affinity of hemoglobin and red cell acid base status, Munksgaard, Copenhagen, and Academic Press, New York.Google Scholar
  115. 115.
    Rosenthal, A., Mentzer, W. C., Eisenstein, E. B., Nathan, D. G., Nelson, N. M., and Nadas, A. S., 1971, The role of red cell organic phosphates in adaptation to congenital heart disease, Pediatrics 47:537–543.PubMedGoogle Scholar
  116. 116.
    Roughton, F. J. W., 1964, Transport of oxygen and carbon dioxide, in: Handbook of Physiology, Section 3, Respiration I (W. O. Fenn and H. Rahn, eds.), pp. 767–826, American Physiological Society, Washington, D.C.Google Scholar
  117. 117.
    Rubenstein, S. D., Stark, A. R., and Delivoria-Papadopoulos, M., 1975, Effect of exchange transfusion with fresh “settled” red blood cells on tissue oxygen transport of low birth weight infants, Pediatr. Res. 9:326.Google Scholar
  118. 118.
    Schettini, F., Mautone, A., and DeLuca, I., 1975, 2,3-Diphosphoglycerate and hydrogen-ion concentration in erythrocytes from full-term newborn infants, Riv. Ital. Pediatr. (I.J.P.) 1:11–16.Google Scholar
  119. 119.
    Schroeder, W. A., 1963, The hemoglobins, Annu. Rev. Biochem. 32:301–320.PubMedCrossRefGoogle Scholar
  120. 120.
    Shappell, S. D., and Lenfant, C. J. M., 1972, Adaptive, genetic, and iatrogenic alterations of the oxyhemoglobin-dissociation curve, Anesthesiology 37:127–139.PubMedCrossRefGoogle Scholar
  121. 121.
    Siggaard-Andersen, O., Salling, N., Nörgaard, B., and Rorth, M., 1972, Oxygen-linked hydrogen binding of human hemoglobin. Effects of carbon dioxide and 2,3-diphosphoglycerate. III. Comparison of the Bohr effect and the Haldane effect, Scand. J. Clin. Invest. 29:185–193.PubMedCrossRefGoogle Scholar
  122. 122.
    Snyder, L. M, and Reddy, W. J., 1970, Mechanism of action of thyroid hormones on erythrocyte 2,3-diphosphoglyeerie acid synthesis, J. Clin. Invest. 49:1993–1998.PubMedCrossRefGoogle Scholar
  123. 123.
    Stamatoyannopoulos, G., Parer, J. T., and Finch, C. A., 1969, Implications of a hemoglobin with decreased oxygen affinity, N. Engl. J. Med. 281:915–919.CrossRefGoogle Scholar
  124. 124.
    Stockman, J. A., 1975, Anemia of prematurity, Semin. Hematol. 12:165–173.Google Scholar
  125. 125.
    Strumia, M. M, and Strumia, P. V., 1972, Conditions affecting the maintenance of adenosine triphosphate, 2,3-diphosphoglycerate and oxygen dissociation by addition of adenine and inosine to blood stored at 1°C, Transfusion 12:68–74.PubMedGoogle Scholar
  126. 126.
    Thomas, H. M., Lefrak, S. S., Irwin, R. S., Fritts, H. W., and Caldwell, P. R. B., 1974, The oxyhemoglobin dissociation curve in health and disease, Amer. J. Med. 57:331–348.PubMedCrossRefGoogle Scholar
  127. 127.
    Thompson, R. B., Warrington, R. L., and Bell, W. N., 1965, Physiologic differences in hemoglobin variants, Amer. J. Physiol. 208:198–202.PubMedGoogle Scholar
  128. 128.
    Travis, S. F., Sugerman, H. J., Ruberg, R. L., Dudrick, S. J., Delivoria-Papadopoulos, M., Miller, L. D., and Oski, F. A., 1971, Alterations of red cell glycolytic intermediates and oxygen transport as a consequence of hypophosphatemia in patients receiving intravenous hyperalimentation, N. Engl. J. Med. 285:763–768.PubMedCrossRefGoogle Scholar
  129. 129.
    Turek, Z., Kreuzer, F., and Hoofd, L. J. C., 1973, Advantage or disadvantage of a decrease of blood oxygen affinity for tissue oxygen supply at hypoxia, Pfluegers Arch. 342:185–208.CrossRefGoogle Scholar
  130. 130.
    Tyuma, I., and Shimizu, K., 1970, Effect of organic phosphates on the difference in oxygen affinity between fetal and adult human hemoglobin, Fed. Proc. Fed. Amer. Soc. Exp. Biol. 29:1112–1114.Google Scholar
  131. 131.
    Usher, R. H., Saigal, S., O’Neill, A., Surainder, Y., and Chua, L.-B., 1975, Estimation of red blood cell volume in premature infants with and without respiratory distress syndrome, Biol. Neonate 26:241–248.PubMedCrossRefGoogle Scholar
  132. 132.
    Valeri, C. R., 1971, Viability and function of preserved red cells, N. Engl. J. Med. 284:81–88.PubMedCrossRefGoogle Scholar
  133. 133.
    Valeri, C. R., 1974, Oxygen transport function of preserved red cells, Clin. Haematol. 3:649–688.Google Scholar
  134. 134.
    Valtis, D. J., and Kennedy, A. C., 1953, The causes and prevention of defective function of stored red blood cells after transfusion, Glasgow Med. J. 34:521–543.PubMedGoogle Scholar
  135. 135.
    Verdier, C. H. De, and Garby, L., 1969, Low binding of 2,3-diphosphoglycerate to haemoglobin F. A contribution to the knowledge of the binding site and an explanation for the high oxygen affinity of foetal blood, Scand. Clin. Lab. Invest. 23:149–151.CrossRefGoogle Scholar
  136. 136.
    Versmold, H., and Brauser, B., 1973, Improved cellular oxygenation by 2,3-diphosphoglycerate: Quantitative measurement of tissue hypoxia by registration of absorption spectra of cytochrome a and hemoglobin in the intact organ, in: Metabolism and Membrane Permeability of Erythrocytes, Thrombocytes and Leukocytes (E. Gerlach, K. Moser, W. Wilmanns, and E. Deutsch, eds.), pp. 170 and 171, Georg Thieme, Stuttgart.Google Scholar
  137. 137.
    Versmold, H. T., Fürst, K., and Riegel, K. P., 1974, Influence of 2,3-diphosphoglycerate on the oxygen affinity of partially autoxidized hemoglobins A1 and F1. Pediatr. Res. 8:140 (abstract).CrossRefGoogle Scholar
  138. 138.
    Versmold, H., Horn, K., Windthorst, H., and Riegel, K. P., 1973, The rapid postnatal increase of red cell 2,3-diphosphogly cerate: Its relation to plasma thyroxine, Respir. Physiol 18:26–33.PubMedCrossRefGoogle Scholar
  139. 139.
    Versmold, H. T., Linderkamp, O., Döhlemann, C., and Riegel, K. P., 1976, Oxygen transport in congenital heart disease: Influence of fetal hemoglobin, red cell pH and 2,3-DPG, Pediatr. Res. 10:566–570.PubMedCrossRefGoogle Scholar
  140. 140.
    Versmold, H., Seifert, G., and Riegel, K. P., 1973, Blood oxygen affinity in infancy: The interaction of fetal and adult hemoglobin, oxygen capacity, and red cell hydrogen ion and 2,3-diphosphogly cerate concentration, Respir. Physiol. 18:14–25.PubMedCrossRefGoogle Scholar
  141. 141.
    Versmold, H., Wenner, J., and Riegel, K., 1972, Changes of blood oxygen affinity and capacity and red cell 2,3-diphosphogly cerate evoked by exchange transfusions with ACD preserved blood in newborn infants: Their interrelationship and influences on oxygen supply of tissues and erythropoiesis, Z. Kinderheilkd. 113:1–18.PubMedCrossRefGoogle Scholar
  142. 142.
    Walker, J., and Turnbull, E. P. N., 1953, Haemo- globin and red cells in the human foetus and their relation to the oxygen content of the blood in the vessels of the umbilical cord, Lancet 2:312–318.CrossRefGoogle Scholar
  143. 143.
    Woodson, R. D., 1974, Red cell adaptation in cardiorespiratory disease, Clin. Haematol. 3:627–648.Google Scholar
  144. 144.
    Woodson, R. D., Torrance, J. D., Shappell, S. D., and Lenfant, C., 1970, The effect of cardiac disease on hemoglobin oxygen binding, J. Clin. Invest. 49:1349–1356.PubMedCrossRefGoogle Scholar
  145. 145.
    Wranne, B., Woodson, R. D., and Detter, J. C., 1972, Bohr effect: Interaction between H+, CO2, and 2,3-DPG in fresh and stored blood, J. Appl. Physiol. 32:749–754.PubMedGoogle Scholar
  146. 146.
    Wyman, J., 1948, Heme proteins, Adv. Protein Chem. 4:407–531.PubMedCrossRefGoogle Scholar
  147. 147.
    Yao, A. C., Lind, J., Tiisala, R., and Michelsson, K., 1969, Placental transfusion in the premature infant with observation on clinical course and outcome, Acta Paediatr. Scand. 58:561–566.PubMedCrossRefGoogle Scholar
  148. 148.
    Ylppö, A., 1916, Neugeborenen-, Hunger- und Intoxikations-acidosis in ihren Beziehungen zueinander, Z. Kinderheilkd. 14:268–448.CrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Klaus P. Riegel
    • 1
  • Hans T. Versmold
    • 1
  1. 1.University Children’s HospitalMunichGermany

Personalised recommendations