The Hemoglobins

  • Enno Kleihauer


The permanent change in the morphological, biochemical, and functional characteristics of the red cell during development is a physiologic event the significance of which is not precisely known. The changes in different erythrocyte properties are not strongly correlated with each other or limited to the production processes of cells in the various hematopoietic sites. Among the criteria used to differentiate between fetal and adult erythrocytes, the shorter life span and the high susceptibility to oxidation stress do not imply that these cells are of inferior value. No data exist to suggest functional immaturity of fetal red cells under normal developmental conditions.


Fetal Hemoglobin Fetal Stage High Oxygen Affinity Hemoglobin Type Hereditary Persistence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ager, J. A. M., and Lehmann, H., 1958, Observations on some “fast” haemoglobins: K, J, N, and Bart’s, Br. Med. J. 1:929.PubMedCrossRefGoogle Scholar
  2. 2.
    Ahern, E., Holder, W., Ahern, V., Serjeant, G. R., Serjeant, B. E., Forbes, M., Brimhall, B., and Jones, R. T., 1975, Haemoglobin F Victoria Jubilee (α2Aγ2 80 Asp→Tyr), Biochim. Biophys. Acta 393:188.PubMedGoogle Scholar
  3. 3.
    Ahern, E. J., Jones, R. T., Brimhall, B., and Gray, R. H., 1970, Haemoglobin F Jamaica (α2γ2 61 Lys→Glu; 136 Ala), Br. J. Haematol. 18:369.PubMedCrossRefGoogle Scholar
  4. 4.
    Ahern, E. J., Wiltshire, B. G., and Lehmann, H., 1972, Further characterization of haemoglobin F Texas I γ5 glutamic acid→lysine; γ 136 alanine, Biochim. Biophys. Acta 271:61.PubMedGoogle Scholar
  5. 5.
    Allen, D., and Jandl, J., 1960, Factors influencing relative rates of synthesis of adult and fetal hemoglobin in vitro, J. Clin. Invest. 39:1107.CrossRefGoogle Scholar
  6. 6.
    Allen, D. W., Wyman, J., Jr., and Smith, C. A., 1953, The oxygen equilibrium of fetal and adult hemoglobin, J.Biol. Chem. 203:81.PubMedGoogle Scholar
  7. 7.
    Alter, P. A., Kan, Y. W., Frigoletto, F. D., and Nathan, D. G., 1974, The antenatal diagnosis of the haemoglobinopathies, Clin. Haematol. 3:509.Google Scholar
  8. 8.
    Baldwin, J. M., 1976, A model of co-operative oxygen binding to haemoglobin, Br. Med. Bull. 32:213.PubMedGoogle Scholar
  9. 9.
    Bard, H., 1973, Postnatal fetal and adult hemoglobin synthesis in early preterm newborn infants, J. Clin. Invest. 52:1789.PubMedCrossRefGoogle Scholar
  10. 10.
    Bard, H., 1974, The effect of placental insufficiency on fetal and adult hemoglobin synthesis, Amer. J. Obstet. Gynecol. 120:67.Google Scholar
  11. 11.
    Bard, H., 1975, The postnatal decline of hemoglobin F synthesis in normal full-term infants, J. Clin. Invest. 55:395.PubMedCrossRefGoogle Scholar
  12. 12.
    Bard, H., Makowski, E. L., Meschia, G., and Battaglia, F. C., 1970, The relative rates of synthesis of hemoglobin A and F in immature red cells of newborn infants, Pediatrics 45:766.PubMedGoogle Scholar
  13. 13.
    Basch, R. S., 1972, Hemoglobin synthesis in short-term cultures of human fetal hemopoietic tissues, Blood 39:530.PubMedGoogle Scholar
  14. 14.
    Bauer, C., 1974, On the respiratory function of hemoglobin, Rev. Physiol. Biochem. Pharmacol. 70:1.PubMedCrossRefGoogle Scholar
  15. 15.
    Bauer, C., Ludwig, I., and Ludwig, M., 1968, Different effects of 2,3-diphosphoglycerate and adenosine triphosphate on the oxygen affinity of adult and foetal human haemoglobin, Life Sci. 7:1339.CrossRefGoogle Scholar
  16. 16.
    Beaven, G. H., Ellis, M. J., and White, J. C., 1960, Studies on human foetal haemoglobin. I. Detection and estimation, Br. J. Haematol. 6:1.PubMedCrossRefGoogle Scholar
  17. 17.
    Beaven, G. H., Hoch, M., and Holiday, E. R., 1951, The haemoglobins of the human foetus and infant, Biochem. J. 49:374.PubMedGoogle Scholar
  18. 18.
    Benesch, R., and Benesch, R. E., 1964, Properties of haemoglobin H and their significance in relation to function ofhaemoglobin, Nature (London) 202:773.CrossRefGoogle Scholar
  19. 19.
    Bethlenfalvay, N. C., Louro, J. M., and Greer, H. A., 1972, Translocation trisomy D syndrome 46, XX, D-, t (Dq Dq) +: Report of a case with a note on the cold-instability of Hb Gower 2, Pediatrics 50:928.PubMedGoogle Scholar
  20. 20.
    Betke, K., 1954, Der menschliche rote Blutfarbstoff bei Fetus und reifem Organismus, Springer-Verlag, Berlin.Google Scholar
  21. 21.
    Betke, K., 1958, Hämatologie der ersten Lebenszeit, Ergebn. Inn. Med. Kinderheilkd. 9:437.Google Scholar
  22. 22.
    Betke, K., and Greinacher, I., 1954, Hitzede-naturierung und Hitzecoagulation bei fetalem und bleibendem Hämoglobin des Menschen, Z. Kinderheilkd. 75:235.PubMedCrossRefGoogle Scholar
  23. 23.
    Betke, K., and Kleihauer, E., 1958, Fetaler und bleibender Blutfarbstoff in Erythrozyten und Ery-throblasten von menschlichen Feten und Neugeborenen, Blut 4:241.PubMedCrossRefGoogle Scholar
  24. 24.
    Betke, K., Kleihauer, E., Brakebusch, E., and Nierhaus, K., 1965, Zytologische Untersuchungen zur perinatalen Ablösung von HbF durch HbA und ihre Beziehungen zur Makrozytose des Neugeborenen, Paediatr. Paedol. 1:17.Google Scholar
  25. 25.
    Betke, K., Kleihauer, E., and Lipps, M., 1956, Vergleichende Untersuchungen über die Spontanoxydation von Nabelschnur- und Erwachsenenhämoglobin, Z. Kinderheilkd. 77:549.PubMedCrossRefGoogle Scholar
  26. 26.
    Betke, K., Marti, H. R., and Schlicht, I., 1959, Estimation of small percentages of fetal hemoglobin, Nature (London) 184:1877.CrossRefGoogle Scholar
  27. 27.
    Bhattacharya, S. P., Anyaibe, S. I., and Headings, V. E., 1976, Biological variation in the heterogeneous distribution of haemoglobin F among erythrocytes, Br. J. Haematol. 33:401.PubMedCrossRefGoogle Scholar
  28. 28.
    Bloom, W., and Bartelmez, G. W., 1940, Hemato-poiesis in young human embryos, Amer. J. Anat. 67:21.CrossRefGoogle Scholar
  29. 29.
    Boyer, S. H., Belding, T. K., Margolet, L., and Noyes, A. N., 1975, Fetal hemoglobin restriction to a few erythrocytes (F cells) in normal human adults, Science 188:361.PubMedCrossRefGoogle Scholar
  30. 30.
    Breathnach, C. S., 1962, Red cell diameters in human cord and neonatal blood, Q. J. Exp. Physiol. 47:148.Google Scholar
  31. 31.
    Brimhall, B., Vedvick, T. S., Jones, R. T., Ahern, E., Palomino, E., and Ahern, V., 1973, Haemoglobin F Port Royal (α2Gγ 125 Glu → Ala), Br. J. Haematol. 27:313.CrossRefGoogle Scholar
  32. 32.
    Brody, S., and Engström, L., 1960, Foetal and adult haemoglobin in newborn infants with erythroblastosis foetalis, Acta Paediatr. Scand. 49:868.CrossRefGoogle Scholar
  33. 33.
    Bromberg, Y. M., Abrahamov, A., and Salzberger, M., 1956, The effect of maternal anoxaemia on foetal haemoglobin of the newborn, J. Obstet. Gynaecol. Br. Commonul. 63:875.CrossRefGoogle Scholar
  34. 34.
    Bunn, H. F., and Briehl, R. W., 1970, The interaction of 2,3-diphosphoglycerate with various human hemoglobins, J. Clin. Invest. 49:1088.PubMedCrossRefGoogle Scholar
  35. 35.
    Bunn, H. F., and Jandl, J. H., 1970, Control of hemoglobin function within the red cell, N. Engl. J. Med. 282:1414.PubMedCrossRefGoogle Scholar
  36. 36.
    Capp, G. L., Rigas, D. A., and Jones, R. T., 1967, Hemoglobin Portland 1: A new human hemoglobin unique in structure, Science 157:65.PubMedCrossRefGoogle Scholar
  37. 37.
    Capp, G. L., Rigas, D. A., and Jones, R. T., 1970, Evidence for a new haemoglobin chain (ζ-chain), Nature (London) 228:278.Google Scholar
  38. 38.
    Carrell, R. W., Owen, M. C., Anderson, R., and Berry, E., 1974, Haemoglobin F Auckland Gγ7 Asp→ Asn—further evidence for multiple genes for the gamma chain, Biochim. Biophys. Acta 365:323.PubMedGoogle Scholar
  39. 39.
    Carver, M. J., 1948, Basic studies in mongolism. II. Hemoglobin, J. Nerv. Ment. Dis. 127:374.Google Scholar
  40. 40.
    Cauchi, M. N., Clegg, J. B., and Weatherall, D. J., 1969, Haemoglobin F (Malta): A new foetal haemoglobin variant with a high incidence in Maltese infants, Nature (London) 223:311.CrossRefGoogle Scholar
  41. 41.
    Charache, S., Schruefer, J. J., and Bias, W. B., 1968, Hereditary persistence of fetal red cells, J.Clin. Invest. 47:17A.Google Scholar
  42. 42.
    Cividalli, G., Nathan, D. G., Kan, Y. W., Santamarina, B., and Frigoletto, F., 1974, Relation of beta to gamma synthesis during the first trimester: An approach to prenatal diagnosis of thalassemia, Pediatr. Res. 8:553.PubMedCrossRefGoogle Scholar
  43. 43.
    Colombo, B., Kim, B., Perez Atencio, R., Molina, C., and Terrenato, L., 1976, The pattern of fetal haemoglobin disappearance after birth, Br. J. Haematol. 32:79.PubMedCrossRefGoogle Scholar
  44. 44.
    Dan, M., and Hagiwara, A., 1967, Detection of two types of hemoglobin (HbA and HbF) in single erythrocytes by fluorescent antibody technique, Exp. Cell. Res. 46:596.PubMedCrossRefGoogle Scholar
  45. 45.
    Dance, N., Huehns, E. R., and Beaven, G. H., 1963, The abnormal haemoglobins in haemoglobin H-disease, Biochem. J. 87:240.PubMedGoogle Scholar
  46. 46.
    Darling, R. C., Smith, C. A., Asmussen, E., and Cohen, F. M., 1941, Some properties of human fetal and maternal blood, J. Clin. Invest. 20:739.PubMedCrossRefGoogle Scholar
  47. 47.
    Dawes, G. S., 1967, New views on O2 transfer across the placenta, in: The Scientific Basis of Medicine, Annual Reviews, British Postgraduate Medical Federation, pp. 74–89, Ashlone Press, London.Google Scholar
  48. 48.
    De Verdier, C. H., and Garby, L., 1969, Low binding of 2,3-diphosphoglycerate to haemoglobin F: A contribution to the knowledge of the binding site and an explanation for high affinity of foetal blood, Scand. J. Clin. Lab. Invest. 23:149.PubMedCrossRefGoogle Scholar
  49. 49.
    Dozy, A. M., Kleihauer, E. F., and Huisman, T. H. J., 1968, Studies on the heterogeneity of hemoglobin. XIII. Chromatography of various human and animal hemoglobin types on DEAE-Sephadex, J. Chromatogr. 32:723.PubMedCrossRefGoogle Scholar
  50. 50.
    Drabkin, D. L., 1965, The molecular weight of haemoglobin, its iron and nitrogen content and optical properties—Their relevance in the problem of a reference standard for haemoglobin measurement, in: Standardization, Documentation and Normal Values in Haematology (C. G. de Boroviczény, ed.), Bibl. Haematol. (Basel) 21:33.Google Scholar
  51. 51.
    Drescher, H., and Künzer, W., 1954, Der Blutfarbstoff der menschlichen Feten, Klin. Wochenschr. 32:92.PubMedCrossRefGoogle Scholar
  52. 52.
    Dreyfus, J. C., Schapira, G., and Harari, M., 1954, Incorporation du fer radioactif in vitro dans les globules rouges du nouveau-né (hémoglobine foetale et hémoglobine adulte), C. R. Soc. Biol. (Paris) 148:1798.Google Scholar
  53. 53.
    Erdem, S., and Aksoy, M., 1969, The increase of hemoglobin A2 to its adult level, Isr. J. Med. Sci. 5:427.PubMedGoogle Scholar
  54. 54.
    Erkman, B., Basus, V. R., and Conen, P. E., 1965, D/D translocation “D” syndrome, J.Pediatr. 67:270.CrossRefGoogle Scholar
  55. 55.
    Fessas, P., and Loukopoulos, D., 1974, The β-thalassaemias, Clin. Haematol. 3:411.Google Scholar
  56. 56.
    Fessas, P., and Papaspyrou, A., 1957, A new fast hemoglobin associated with thalassemia, Science 126:1119.PubMedCrossRefGoogle Scholar
  57. 57.
    Finne, P. H., and Halvorsen, S., 1972, Regulation of erythropoiesis in the fetus and newborn, Arch. Dis. Child. 47:683.PubMedCrossRefGoogle Scholar
  58. 58.
    Fraser, I. D., and Raper, A. B., 1962, Observations on the change from foetal to adult erythropoiesis, Arch. Dis. Child. 37:289.PubMedCrossRefGoogle Scholar
  59. 59.
    Gabbay, K. H., 1976, Glycosylated hemoglobin and diabetic control (editorial), N. Engl. J. Med. 295:443.PubMedCrossRefGoogle Scholar
  60. 60.
    Gabuzda, T. G., Silver, R. K., Chui, L. C., and Lewis, H. B., 1970, The formation of foetal and adult haemoglobin in cell cultures of neonatal calf marrow, Br. J. Haematol. 19:621.PubMedCrossRefGoogle Scholar
  61. 61.
    Garby, L., Sjölin, S., and Vuille, J. C., 1962, Studies of erythrokinetics in infancy. II. The relative rate of synthesis of haemoglobin F and haemoglobin A during the first months of life, Acta Paediatr. Scand. 51:245.CrossRefGoogle Scholar
  62. 62.
    Garby, L., Sjölin, S., and Vuille, J., 1964, Studies on erythrokinetics in infancy. V. Estimations of the life span of red cells in the newborn, Acta Paediatr. Scand. 53:165.CrossRefGoogle Scholar
  63. 63.
    Gilmour, J. R., 1941, Normal hematopoiesis in intrauterine and neonatal life, J. Pathol. Bacteriol. 52:25.CrossRefGoogle Scholar
  64. 64.
    Grifoni, V., Kamuzora, H., Lehmann, H., and Charlesworth, D., 1975, A new Hb Variant: HbF Sardinia γ75 (E19) isoleucine→ threonine found in a family with Hb G Philadelphia, β-chain deficiency and a Lepore-like haemoglobin indistinguishable from HbA2, Acta Haematol. 53:347.PubMedCrossRefGoogle Scholar
  65. 65.
    Halbrecht, I., and Klibanski, C., 1956, Identification of a new normal embryonic haemoglobin, Nature (London) 178:794.CrossRefGoogle Scholar
  66. 66.
    Halbrecht, I., Klibanski, C., and Bar Ilan, F., 1959, Co-existence of the embryonic (third normal) haemoglobin fraction with erythroblastosis in the blood of two full-term newborn babies with multiple malformations, Nature (London) 183:327.CrossRefGoogle Scholar
  67. 67.
    Hall, J., and Motulsky, A., 1968, Production of fetal hemoglobin in marrow cultures of human adults, Nature (London) 217:569.CrossRefGoogle Scholar
  68. 68.
    Hecht, F., Jones, R. T., and Koler, R. D., 1967, Newborn infants with Hb Portland 1, an indicator of a chain deficiency, Ann. Hum. Genet. 31:215.CrossRefGoogle Scholar
  69. 69.
    Hecht, F., Keil, J. V., and Motulsky, A. G., 1964, Developmental hemoglobin anomalies in a chromosomal triplication: D1 trisomy syndrome, Proc. Natl. Acad. Sci. U.S.A. 51:89.PubMedCrossRefGoogle Scholar
  70. 70.
    Hecht, F., Motulsky, A. G., Lemire, R. J., and Shepard, T. E., 1966, Predominance of hemoglobin Gower 1 in early human embryonic development, Science 152:91.PubMedCrossRefGoogle Scholar
  71. 71.
    Heller, P., and Yakulis, V., 1969, The distribution of hemoglobin A2, Ann. N. Y. Acad. Sci. 165:54.PubMedCrossRefGoogle Scholar
  72. 72.
    Hollenberg, M. D., Kaback, M. M., and Kazazian, H. H., 1971, Adult hemoglobin synthesis by reticulocytes from the human fetus at midtrimester, Science 174:698.PubMedCrossRefGoogle Scholar
  73. 73.
    Holmquist, W. R., and Schroeder, W. A., 1966, A new N-terminal blocking group involving a Schiff base in hemoglobin AIC, Biochemistry 5:2489.PubMedCrossRefGoogle Scholar
  74. 74.
    Honig, G. R., 1967, Inhibition of synthesis of fetal hemoglobin by an isoleucine analogue, J. Clin. Invest. 46:1778.PubMedCrossRefGoogle Scholar
  75. 75.
    Horton, B. F., Thompson, R. B., Dozy, A. M., Nechtmann, C., Nichols, E., and Huisman, T. H. J., 1962, Inhomogeneity of hemoglobin. VI. The minor hemoglobin components of cord blood, Blood 20:302.PubMedGoogle Scholar
  76. 76.
    Hosoi, T., 1968, Fluorescent antibody technique utilized for studies on cellular distribution of erythrocytic antigens, Acta Haematol. Jpn. 31:138.Google Scholar
  77. 77.
    Huehns, E. R., and Beaven, G. H., 1962, The reaction of haemoglobin α 4 with haemoglobin H and haemoglobin Bart’s, Biochem. J. 83:40.Google Scholar
  78. 78.
    Huehns, E. R., and Farooqui, A. M., 1975, Oxygen dissociation properties of human embryonic red cells, Nature (London) 254:335.CrossRefGoogle Scholar
  79. 79.
    Huehns, E. R., and Shooter, E. M., 1965, Human haemoglobins, J. Med. Genet. 2:48.PubMedCrossRefGoogle Scholar
  80. 80.
    Huehns, E. R., and Shooter, E. M., 1966, The properties and reactions of haemoglobin F1 and their bearing on the dissociation equilibrium of haemoglobin, Biochem. J. 101:852.PubMedGoogle Scholar
  81. 81.
    Huehns, E. R., Dance, N., Beaven, G. H., Hecht, F., and Motulsky, A. G., 1964, Human embryonic hemoglobins, Cold Spring Harbor Symp. Quant. Biol. 24:327.CrossRefGoogle Scholar
  82. 82.
    Huehns, E. R., Dance, N., Beaven, G. H., Keil, J. V., Hecht, F., and Motulsky, A. G., 1964, Human embryonic haemoglobins, Nature (London) 201:1095.CrossRefGoogle Scholar
  83. 83.
    Huehns, E. R., Flynn, F. V., Butler, E. A., and Beaven, G. H., 1961, Two new haemoglobin variants in a very young human embryo, Nature (London) 189:496.CrossRefGoogle Scholar
  84. 84.
    Huisman, T. H. J., and Schroeder, W. A., 1970, New aspects of the structure, function, and synthesis of hemoglobins, Crit. Rev. Clin. Lab. Sci. 1:471.CrossRefGoogle Scholar
  85. 85.
    Huisman, T. H. J., Schroeder, W. A., Bannister, W. H., and Grech, J. L., 1972, Evidence for four nonallelic structural genes for the γ chain of human fetal hemoglobin, Biochem. Genet. 7:131.PubMedCrossRefGoogle Scholar
  86. 86.
    Huisman, T. H. J., Wrightstone, R. N., Wilson, J. B., Schroeder, W. A., and Kendall, A. G., 1972, Hemoglobin Kenya, the product of fusion of γ and β polypeptide chains. Arch. Biochem. Biophys. 153:850.PubMedCrossRefGoogle Scholar
  87. 87.
    Hunt, J. A., 1959, Identity of α-chains of adult and fetal haemoglobin, Nature (London) 183:1373.CrossRefGoogle Scholar
  88. 88.
    Hunt, J. A., and Lehmann, H., 1959, Haemoglobin “Bart’s”: A foetal haemoglobin without a chains, Nature (London) 184:872.CrossRefGoogle Scholar
  89. 89.
    Jenkins, G. C., Beale, D., Black, A. J., Huntsman, G. R., and Lehmann, H., 1967, Haemoglobin F Texas I (α2γ2 5 Glu→Lys): A variant of haemoglobin F, Br. J. Haematol. 13:252.PubMedCrossRefGoogle Scholar
  90. 90.
    Jensen, M., and Murken, D. J., 1976, Hemoglobin chain synthesis in two children with trisomy 13. Evidence for temporary imbalance during switch from gamma to beta chain synthesis, Eur. J. Pediatr. 122:151.PubMedCrossRefGoogle Scholar
  91. 91.
    Jonxis, J. H. P., and Huisman, T. H. J., 1968, A Laboratory Manual on Abnormal Haemoglobins, 2d Ed., Blackwell Scientific Publications, Edinburgh and Oxford.Google Scholar
  92. 92.
    Jope, E. M, 1949, The ultra-violet spectral absorption of haemoglobin inside and outside of the red blood cell, in: Haemoglobin (F. J. W. Roughton and J. C. Kendrew, eds.), pp. 205–219, Butterworths, London.Google Scholar
  93. 93.
    Kabat, D., 1972, Gene selection in hemoglobin and in antibody-synthesizing cells, Science 175:134.PubMedCrossRefGoogle Scholar
  94. 94.
    Kabat, D., 1974, The switch from fetal to adult hemoglobin in humans: Evidence suggesting a role for α-β gene linkage, Ann. N Y. Acad. Sci. 241:119.PubMedCrossRefGoogle Scholar
  95. 95.
    Kaltsoya, A., Fessas, P., and Stavropoulos, A., 1966, Hemoglobins of early human embryonic development, Science 153:1417.PubMedCrossRefGoogle Scholar
  96. 96.
    Kamuzora, H., and Lehmann, H., 1975, Human embryonic haemoglobins including a comparison by homology of the human ζ and α chains, Nature (London) 256:511.CrossRefGoogle Scholar
  97. 97.
    Kan, Y. W., Dozy, A. M., Alter, B. P., Frigoletto, F. D., and Nathan, D. G., 1972, Detection of the sickle gene in the human fetus: Potential for intrauterine diagnosis of sickle-cell anemia, N. Engl. J. Med. 287:1.PubMedCrossRefGoogle Scholar
  98. 98.
    Kan, Y. W., Dozy, A., Varmus, H. E., Taylor, J. M., Holland, J. P., Lie-Injo, L. E., Ganesan, J., and Todd, D., 1975, Deletion of α-globin genes in haemoglobin H disease demonstrates multiple α-globulin structural loci, Nature (London) 255:255.CrossRefGoogle Scholar
  99. 99.
    Kan, Y. W., Forget, B. G., and Nathan, D. G., 1972, Gamma-beta-thalassemia. A cause of hemolytic disease of the newborn, N. Engl. J. Med. 286:129.PubMedCrossRefGoogle Scholar
  100. 100.
    Karaklis, A., and Fessas, P., 1963, The normal minor components of human foetal haemoglobin, Acta Haematol. (Basel) 29:267.CrossRefGoogle Scholar
  101. 101.
    Kazazian, H. H., 1974, Regulation of fetal hemoglobin production, Semin. Hematol. 11:525.PubMedGoogle Scholar
  102. 102.
    Kazazian, H. H., and Woodhead, A. P., 1974, Adult hemoglobin synthesis in the human fetus, Ann. N. Y.Acad. Sci. 241:691.PubMedCrossRefGoogle Scholar
  103. 103.
    Kazazian, H. H., Silverstein, A., Snyder, P. G., and van Beneden, R. J., 1976, Increasing haemoglobin β-chain synthesis in foetal development is associated with a declining γ- to α-mRNA ratio, Nature (London) 260:67.CrossRefGoogle Scholar
  104. 104.
    Kilmartin, J. V., 1976, Interaction of haemoglobin with protons, CO2 and 2,3-diphosphogylcerate, Br. Med. Bull. 32:209.PubMedGoogle Scholar
  105. 105.
    Kirschbaum, T. H., 1962, Fetal hemoglobin content of cord blood determined by column chromatography, Amer. J. Obstet. Gynecol. 84:1375.Google Scholar
  106. 106.
    Kitchen, H., and Brett, I., 1974, Embryonic and fetal hemoglobin in animals, Ann. N. Y. Acad. Sci. 241:653.PubMedCrossRefGoogle Scholar
  107. 107.
    Kleihauer, E., 1957, Denaturierung von fetalem und bleibendem Hämoglobin durch Salzsäure, Naturwissenschaften 44:308.CrossRefGoogle Scholar
  108. 108.
    Kleihauer, E., 1960, Beitrag zur postnatalen HbF-Bildung. III. Internationales Erythrozyten-Symposium, Berlin, Folia Haematol. (Leipzig) 78:69.Google Scholar
  109. 109.
    Kleihauer, E., 1966, Fetales Hämoglobin und fetale Erythrozyten, Arch. Kinderheilkd. Suppl. 53.Google Scholar
  110. 110.
    Kleihauer, E., 1970, The hemoglobins, in: Physiology of the Perinatal Period (U. Stave, ed.), pp. 255–297, Appleton-Century-Crofts, New York.Google Scholar
  111. 111.
    Kleihauer, E., 1974, Determination of fetal hemoglobin: Elution technique, in: The Detection of Hemoglobinopathies (R. M. Schmidt, T. H. J. Huisman, and H. Lehmann, eds.), pp. 20–22, CRC Press, Cleveland Ohio.Google Scholar
  112. 112.
    Kleihauer, E., and Brandt, G., 1964, Überlebenszeit fetaler Erythrozyten im mütterlichen Kreislauf, Klin. Wochenschr. 42:458.PubMedCrossRefGoogle Scholar
  113. 113.
    Kleihauer, E., Betke, K., and König, P. A., 1965, Embryonale Hämoglobine, Klin. Wochenschr. 43:435.PubMedCrossRefGoogle Scholar
  114. 114.
    Kleihauer, E., Braun, H., and Betke, K., 1957, Demonstration von fetalem Hämoglobin in Erythrozyten eines Blutausstriches, Klin. Wochenschr. 35:637.PubMedCrossRefGoogle Scholar
  115. 115.
    Kleihauer, E., Tang, D., and Betke, K., 1967, Die intrazelluläre Verteilung von embryonalem Hämoglobin in roten Blutzellen menschlicher Embryonen, Acta Haematol. (Basel) 38:264.CrossRefGoogle Scholar
  116. 116.
    Knoll, W., 1949, Der Gang der Erythropoese beim menschlichen Embryo, Acta Haematol. (Basel) 2:369.CrossRefGoogle Scholar
  117. 117.
    Koenig, R. J., Peterson, C. M., Jones, R. L., Saudek, C., Lehrman, M., and Cerami, A., 1976, Correlation of glucose regulation and hemoglobin AIC in diabetes mellitus, N. Engl. J. Med. 295:417.PubMedCrossRefGoogle Scholar
  118. 118.
    Kohne, E., and Kleihauer, E., 1974–1976, Unpublished data.Google Scholar
  119. 119.
    Kohne, E., and Kleihauer, E., 1975, Beziehungen zwischen Polyglobulie und Hämoglobinmuster bei Neugeborenen mit G Trisomie, Klin. Wochenschr. 53:111.PubMedCrossRefGoogle Scholar
  120. 120.
    Kohne, E., Krause, M., Leupold, D., and Kleihauer, E., 1977, Hemoglobin F Koelliker (α 2 minus 141 [HC 3] Arg γ 2 A modification of fetal hemoglobin, Hemoglobin 1:257.PubMedCrossRefGoogle Scholar
  121. 121.
    Komazawa, M., Garcia, A. M., and Oski, F. A., 1974, The relation of red cell size to fetal hemoglobin concentration in the term infant, J. Pediatr. 85:114.PubMedCrossRefGoogle Scholar
  122. 122.
    Körber, E., 1866, Über Differenzen des Blutfarbstoffes, M. D. Thesis, University of Dorpat.Google Scholar
  123. 123.
    Künzer, W., 1957, Human embryo haemoglobins, Nature (London) 179:477.CrossRefGoogle Scholar
  124. 124.
    Lanyon, W. G., Ottolenghi, S., and Williamson, R., 1975, Human globin gene expression and linkage in bone marrow and fetal liver, Proc. Natl. Acad. Sci. U.S.A. 72:258.PubMedCrossRefGoogle Scholar
  125. 125.
    Larkin, I. L. M, Baker, T., Lorkin, P. A., Lehmann, H., Black, A. J., and Huntsman, R. G., 1968, Haemoglobin F Texas II (α2γ2 6 Glu→Lys), the second of the haemoglobin F Texas variants, Br. J. Haematol. 14:233.PubMedCrossRefGoogle Scholar
  126. 126.
    Lee, C. S. N., Boyer, S. H., Bowen, P., Weatherall, D. J., Rosenblum, H., Clark, D. B., Duke, J. R., Liboro, C., Bias, W., and Borgaonkar, D. S., 1966, The D1 trisomy syndrome: The subjects with unequally advancing development, Bull. Johns Hopkins Hosp. 118:374.Google Scholar
  127. 127.
    Lee-Potter, J. P., Deacon-Smith, R. A., Simpkiss, M. J., Kamuzora, H., and Lehmann, H., 1975, A new cause of haemolytic anaemia in the newborn. A description of an unstable fetal haemoglobin: F Poole, α2Gγ2 130 tryptophan→glycine, J. Clin. Pathol. 28:317.PubMedCrossRefGoogle Scholar
  128. 128.
    Lehmann, H., and Huntsman, R. G., 1974, An introduction to the structure and function of haemoglobin, Clin. Haematol. 3:217.Google Scholar
  129. 129.
    Lie-Injo, L. E., Kamuzora, H., and Lehmann, H., 1974, Haemoglobin F Malaysia: α2γ2 1 (NA1) glycine→cysteine; 136 glycine, J. Med. Genet. 11:25.CrossRefGoogle Scholar
  130. 130.
    Lie-Injo, L. E., Wiltshire, B. G., and Lehmann, H., 1973, Structural identification of haemoglobin F Kuala Lumpur α2γ2 22 (B4) Asp→Gly: 136 Ala), Biochim. Biophys. Acta 322:224.Google Scholar
  131. 131.
    Lorkin, P. A., 1973, Fetal and embryonic haemoglobins, J. Med. Genet. 10:50.PubMedCrossRefGoogle Scholar
  132. 132.
    Loukopoulos, D., Kaltsoya, A., and Fessas, P., 1969, On the chemical abnormality of Hb “Alexandra,” a fetal hemoglobin variant, Blood 333:114.Google Scholar
  133. 133.
    Marti, H. R., 1964, Hämoglobin vom “Alexandra-Typus “im ersten Lebensjahr, Experientia 20:138.PubMedCrossRefGoogle Scholar
  134. 134.
    Matsuda, G., Schroeder, W. A., Jones, R. T., and Weliky, N., 1960, Is there an “embryonic” or “primitive” human hemoglobin?, Blood 16: 984.Google Scholar
  135. 135.
    Minnich, V., Cordonnier, J. K., Williams, W. J., and Moore, G. V., 1962, Alpha, beta and gamma hemoglobin polypeptide chains during the neonatal period with a description of the fetal form of hemoglobin D (St. Louis), Blood 19:137.PubMedGoogle Scholar
  136. 136.
    Nathan, D. G., Alter, B. P., and Frigoletto, F. D., 1975, Antenatal diagnosis of hemoglobinopathies: Social and technical considerations, Semin. Hematol. 12:305.PubMedGoogle Scholar
  137. 137.
    Necheles, T., Sheehan, R., and Meyer, H., 1965, Effect of erythropoietin and oxygen tension on in vitro synthesis of hemoglobin A and F by adult human bone marrow, Proc. Soc. Exp. Biol. (N. Y.) 119:207.Google Scholar
  138. 138.
    Nienhuis, A. W., Barker, J. E., Deisseroth, A., and Anderson, W. F., 1976, Regulation of globine gene expression, in: Congenital Disorders of Erythropoiesis, Ciba Found. Symp. 37, pp. 329–345, Elsevier, Excerpta Medica, North-Holland, Amsterdam, Oxford, New York.Google Scholar
  139. 139.
    Nute, P. E., Pataryas, H. A., and Stamatoyannopoulos, G., 1973, The Gγ and Aγ hemoglobin chains during human fetal development, Amer. J. Hum. Genet. 25:271.PubMedGoogle Scholar
  140. 140.
    Nute, P. E., Wood, W. G., Stamatoyannopoulos, G., Olweny, C., and Failkow, P. J., 1976, The Kenya form of hereditary persistence of fetal haemoglobin: Structural studies and evidence for homogeneous distribution of haemoglobin F using fluorescent anti-haemoglobin F antibodies, Br. J. Haematol. 32:55.PubMedCrossRefGoogle Scholar
  141. 141.
    Old, J., Clegg, J. B., Weatherall, D. J., Otto- Lenghi, S., Comi, P., Giglioni, B., Mitchell, J., Tolstoshev, P., and Williamson, R., 1976, A direct estimate of the number of human γ-globin genes, Cell 8:13.PubMedCrossRefGoogle Scholar
  142. 142.
    Oppé, T. E., and Fraser, I. D., 1961, Foetal haemoglobin in haemolytic disease of the newborn, Arch. Dis. Child. 36:507.PubMedCrossRefGoogle Scholar
  143. 143.
    Oski, F. A., 1972, Fetal hemoglobin, the neonatal red cell, and 2,3-diphosphoglycerate, Pediatr. Clin. North Amer. 19:907.Google Scholar
  144. 144.
    Ottolenghi, S., Lanyon, W. G., Williams, R., Weatherall, D. J., Clegg, J. B., and Pitcher, C. S., 1975, Human globin gene analysis for a case of β°/δβ° thalassaemia, Proc. Natl. Acad. Sci. U.S.A. 72:2294.PubMedCrossRefGoogle Scholar
  145. 145.
    Pataryas, H. A., and Stamatoyannopoulos, G., 1972, Hemoglobins in human fetuses: Evidence for adult hemoglobin production after 11th gestational week, Blood 39:688.PubMedGoogle Scholar
  146. 146.
    Paul, J., 1976, Haemoglobin synthesis and cell differentiation, Br. Med. Bull. 32:277.PubMedGoogle Scholar
  147. 147.
    Perutz, M. F., 1974, Mechanism of denaturation of haemoglobin by alkali, Nature (London) 247:341.CrossRefGoogle Scholar
  148. 148.
    Perutz, M. F., 1976, Structure and mechanism of haemoglobin, Br. Med. Bull 32:195.PubMedGoogle Scholar
  149. 149.
    Pootrakul, S., Wasi, P., and Na-Nakorn, S., 1967, Haemoglobin Bart’s hydrops foetalis in Thailand, Ann. Hum. Genet. 30:293.PubMedCrossRefGoogle Scholar
  150. 150.
    Powars, D., Rohde, R., and Groves, D., 1964, Foetal haemoglobin and neutrophil anomaly in D1-trisomy syndrome, Lancet 1:1363.PubMedCrossRefGoogle Scholar
  151. 151.
    Ricco, G., Mazza, U., Turi, R. M., Pick, P. G., Camaschella, C., Saglio, G., and Bernini, L. F., 1976, Significance of a new type of human foetal hemoglobin carrying a replacement isoleucine→ threonine at position 75 (E19) of the γ-chain, Hum. Genet. 32:305.PubMedCrossRefGoogle Scholar
  152. 152.
    Riggs, A., 1965, Functional properties of hemoglobins, Physiol. Rev. 45:619.PubMedGoogle Scholar
  153. 153.
    Ringelhann, B., Konotey-Ahuly, F. I. D., Lehmann, H., and Lorkin, P. A., 1970, A Ghanasian adult homozygous for hereditary persistence of foetal haemoglobin and heterozygous for elliptocytosis, Acta Haematol. (Basel) 43:100.CrossRefGoogle Scholar
  154. 154.
    Roche, J., and Derrien, Y., 1953, Les hémoglobines humaines et les modifications physiologiques et pathologiques de leur caractères, Sang 24: 97.PubMedGoogle Scholar
  155. 155.
    Rosenberg, M., 1969, Fetal hematopoiesis: Case report, Blood 33:66.PubMedGoogle Scholar
  156. 156.
    Sacker, L. S., Beale, D., Black, A. J., Huntsman, R. G., Lehmann, H., and Lorkin, P. A., 1967, Haemoglobin F Hull (γ 121 glutamic acid→lysine), homologous with haemoglobins O Arab and O Indonesia, Br. Med. J. 3:531.PubMedCrossRefGoogle Scholar
  157. 157.
    Schneider, R. G., Haggard, M. E., Gustavson, L. P., Brimhall, B., and Jones, R. T., 1974, Genetic haemoglobin abnormalities in about 9000 black and 7000 white newborns; haemoglobin F Dickinson (A 97 His→Arg), a new variant, Br. J. Haematol. 28:515.PubMedCrossRefGoogle Scholar
  158. 158.
    Schroeder, W. A., 1965, Factors in the difference between the calculated and determined molecular weight of human haemoglobin, in: Standardization, Documentation and Normal Values in Haematology (C. G. de Boroviczény, ed.), Bibl. Haematol (Basel) 21:50.Google Scholar
  159. 159.
    Schroeder, W. A., 1974, Multiple cistrons for fetal hemoglobin in man, Ann. N. Y. Acad. Sci. 241:70.PubMedCrossRefGoogle Scholar
  160. 160.
    Schroeder, W. A., and Jones, R. T., 1965, Some aspects of the chemistry and function of human and animal hemoglobin, Fortschr. Chem. Org. Naturst. 23:113.PubMedCrossRefGoogle Scholar
  161. 161.
    Schroeder, W. A., Bannister, W. H., Grech, J. L., Brown, A. K., Wrightstone, R. N., and Huisman, T. H. J., 1973, Non-synchronized suppression of postnatal activity in non-allelic genes which synthesize Gγ chain in human foetal haemoglobin, Nature (London) 244:89.Google Scholar
  162. 162.
    Schroeder, W. A., Cua, J. T., Matsuda, G., and Fenninger, W. D., 1962, Hemoglobin F1 an acetyl-containing hemoglobin, Biochim. Biophys. Acta 65:532.CrossRefGoogle Scholar
  163. 163.
    Schroeder, W. A., Huisman, T. H. J., Brown, A. K., Uy, R., Bouver, N. G., Lerch, P. O., Shelton, J. R., Shelton, J. B., and Appell, G., 1971, Postnatal change in the chemical heterogeneity of human fetal hemoglobin, Pediatr. Res. 5:493.CrossRefGoogle Scholar
  164. 164.
    Schroeder, W. A., Huisman, T. H. J., Shelton, J. R., Shelton, J. B., Kleihauer, E. F., Dozy, A. M., and Robberson, B., 1968, Evidence for multiple structural genes for the γ-chain of human fetal hemoglobin, Proc. Natl. Acad. Sci. U.S.A. 60:537.PubMedCrossRefGoogle Scholar
  165. 165.
    Schroeder, W. A., Shelton, J. R., Shelton, J. B., Appell, G., Huisman, T. H. J., and Bouver, N. G., 1972, World-wide occurrence of nonallelic genes for the γ-chain of human foetal hemoglobin in newborns, Nature (London) New Biol. 240:273.CrossRefGoogle Scholar
  166. 166.
    Schroeder, W. A., Shelton, J. R., Shelton, J. B., and Cormick, J., 1963, The amino acid sequence of the α-chain of human fetal hemoglobin, Biochemistry 2:1353.PubMedCrossRefGoogle Scholar
  167. 167.
    Schroeder, W. A., Shelton, J. R., Shelton, J. B., Cormick, J., and Jones, R. T., 1963, The amino acid sequence of the γ-chain of human fetal hemoglobin, Biochemistry 2:992.PubMedCrossRefGoogle Scholar
  168. 168.
    Schulman, L, Smith, C. H., and Stern, G. S., 1954, Studies on the anemia of prematurity. I. Fetal and adult hemoglobin in premature infants, Amer. J. Dis. Child. 88:567.Google Scholar
  169. 169.
    Shepard, M. K., Weatherall, D. J., and Conley, C. L., 1962, Semi-quantitative estimation of distribution of fetal hemoglobin in red cell population, Bull. Johns Hopkins Hosp. 110:293.PubMedGoogle Scholar
  170. 170.
    Stamatoyannopoulos, G., 1971, Gamma-thalas-saemia, Lancet 2:192.PubMedCrossRefGoogle Scholar
  171. 171.
    Stegink, L. D., Meyer, P. D., and Brummel, M. C., 1971, Human fetal hemoglobin F1. Acetylation status, J. Biol. Chem. 246:3001.PubMedGoogle Scholar
  172. 172.
    Thomas, E. D., Lochte, H. L., Jr., Greenough, W. B., and Wales, M., 1960, In vitro synthesis of foetal and adult haemoglobin by foetal haematopoietic tissues, Nature (London) 185:396.CrossRefGoogle Scholar
  173. 173.
    Todd, D., Lai, M. C. S., White, G. H., and Huehns, E. R., 1970, The abnormal hemoglobins in homozygous α-thalassemia, Br. J. Med. 19:27.Google Scholar
  174. 174.
    Tomada, Y., 1964, Demonstration of foetal erythrocytes by immunofluorescent staining, Nature (London) 202:910.CrossRefGoogle Scholar
  175. 175.
    Tuchinda, S., Nagai, K., and Lehmann, H., 1975, Oxygen dissociation curve of haemoglobin Portland, FEBS Lett. 49:390.PubMedCrossRefGoogle Scholar
  176. 176.
    Walzer, S., Gerald, P. S., O’Neill, R., and Diamond, K., 1966, Hematologic changes in D1 trisomy syndrome, Pediatrics 38:419.PubMedGoogle Scholar
  177. 177.
    Wasi, P., Na-Nakorn, S., and Pootrakul, S. N., 1974, The a-thalassaemias, Clin. Haematol. 3:383.Google Scholar
  178. 178.
    Weatherall, D. J., 1963, Abnormal haemoglobins in the neonatal period and their relationship to thalassaemia, Br. J. Haematol. 9:265.PubMedCrossRefGoogle Scholar
  179. 179.
    Weatherall, D. J., 1975, Hereditary persistence of fetal hemoglobin, Br. J. Haematol. 29:191.PubMedCrossRefGoogle Scholar
  180. 180.
    Weatherall, D. J., 1976, Fetal haemoglobin synthesis, in: Congenital Disorders of Erythropoiesis, Ciba Found. Symp. 37, pp. 307–328, Elsevier, Excerpta Medica, North-Holland, Amsterdam, Oxford, New York.Google Scholar
  181. 181.
    Weatherall, D. J., and Clegg, J. B., 1972, The Thalassaemia Syndromes, 2nd Ed., Black well Scientific Publications, Oxford.Google Scholar
  182. 182.
    Weatherall, D. J., Clegg, J. B., and Boon, W. H., 1970, The haemoglobin constitution of infants with the haemoglobin Bart’s hydrops foetalis syndrome, Br. J. Haematol. 18:357.PubMedCrossRefGoogle Scholar
  183. 183.
    Weatherall, D.J., Pembrey, M. E., and Pritchard, J., 1974, Fetal haemoglobin, Clin. Haematol. 3: 467.Google Scholar
  184. 184.
    Weicker, H., Wagner, I., Guttmann, A. B., Krieger, F., Lohrey, H. F., and von Zimmermann, H., 1953, Der Erythrozyteridurchmesser des Kindes, Acta Haematol. (Basel) 10:50.CrossRefGoogle Scholar
  185. 185.
    Weinstein, E., Rucknagel, D. L., and Shaw, M. W., 1965, Quantitative studies on A2, sickle cell, and fetal haemoglobins in Negros with mongolism, with observations on translocation mongolism in Negros, Amer. J. Hum. Genet. 17:443.PubMedGoogle Scholar
  186. 186.
    Weller, S. D. V., Apley, J., and Raper, A. B., 1966, Malformations associated with precocious synthesis of adult hemoglobin—a new chromosomal anomaly syndrome, Lancet 1:777.PubMedCrossRefGoogle Scholar
  187. 187.
    White, J. C., and Beaven, G. H., 1959, Foetal haemoglobin, Br. Med. Bull. 15:33.PubMedGoogle Scholar
  188. 188.
    Wilson, M. G., Schroeder, W. A., Graves, D. A., and Kach, V. D., 1967, Hemoglobin variations in D-trisomy syndrome, N Engl. J. Med. 277:953.PubMedCrossRefGoogle Scholar
  189. 189.
    Winslow, R. M., and Ingram, V. M., 1966, Peptide chain synthesis of human hemoglobin A and A2, J. Biol. Chem. 241:1144.PubMedGoogle Scholar
  190. 190.
    Witschi, E., 1956, Development of Vertebrates, W. B. Saunders Co., Philadelphia.Google Scholar
  191. 191.
    Wood, W. G., 1976, Haemoglobin synthesis during human fetal development, Br. Med. Bull. 32:282.PubMedGoogle Scholar
  192. 192.
    Wood, W. G., and Weatherall, D. J., 1973, Haemoglobin synthesis during human development, Nature (London) 244:162.CrossRefGoogle Scholar
  193. 193.
    Wood, W. G., Stamatoyannopoulos, G., Lim, G., and Nute, P., 1975, F-cells in the adult: Normal values and levels in individuals with hereditary and acquired elevations of HbF, Blood 46:671.PubMedGoogle Scholar
  194. 194.
    Wood, W. G., Whittacker, J. H., Clegg, J. B., and Weatherall, D.J., 1972, Haemoglobin synthesis in human bone marrow culture, Biochim. Biophys. Acta 277:413.PubMedGoogle Scholar
  195. 195.
    Yoffey, J. M., 1971, The stem cell problem in the fetus, Isr.J. Med. Sci. 7:825.PubMedGoogle Scholar
  196. 196.
    Zilliacus, H., Varitiainen, E., and Ottelin, A. M., 1962, Adult haemoglobin in the blood of very young human embryos, Nature (London) 193:386.CrossRefGoogle Scholar
  197. 197.
    Zipursky, A., Neelands, P. J., Pollock, J., Chown, B., and Israels, L. G., 1962, The distribution of fetal hemoglobin in the blood of normal children and adults, Pediatrics 30:262.Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • Enno Kleihauer
    • 1
  1. 1.Department of PediatricsUniversity of UlmD79 Ulm (Donau)West Germany

Personalised recommendations