Advertisement

Pharmacokinetics—A Physiological Function of Lung

  • Y. S. Bakhle

Abstract

Boyle recognized the “genuine use of Respiration as the Ventilation of the Blood in its passage thorow the Lungs; in which passage it is disburthened of Excrementitious Steams” (Boyle, 1660) and Lower a few years later came to the additional conclusion that “the blood takes in air in its course through the lungs and owes its bright colour entirely to the admixture of air” (Lower, 1669). Ever since then investigations into the function of lung have concentrated on respiratory gas exchange. Only comparatively recently have some nonrespiratory functions of lung, for instance, its ability to act as a reservoir of blood and its ability to filter cellular debris from blood, been recognized and lucidly summarized by Heinemann and Fishman (1969). The newest function of lung to be studied is its ability to alter the biological activity of substances entering the lung either through the airways or, more importantly, through the pulmonary circulation. This ability has been called, for want of a better phrase, the pharmacokinetic function of lung (Bakhle and Vane, 1974), and it is this function that is discussed here.

Keywords

Pulmonary Circulation Arterial Circulation Gaseous Anesthetic Bronchial Smooth Muscle Pregnant Uterus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alabaster, V. A., and Bakhle, Y. S. (1970). The release of biologically active substances from isolated lungs by 5–hydroxytryptamine and tryptamine. Br. J. Pharmacol. 40: 582–583 P.Google Scholar
  2. Alabaster, V. A., and Bakhle, Y. S. (1976). Release of smooth muscle contracting substances from isolated perfused lungs. Eur. J. Pharmacol. 35: 349–360.PubMedCrossRefGoogle Scholar
  3. Anonymous (1974). Acrylic cement and the cardiovascular system. Summary of report of working party on acrylic cement in orthopaedic surgery. Lancet 11: 1002–1004.Google Scholar
  4. Bakhle, Y. S. (1968). Conversion of angiotensin Ito angiotensin II by cell-free extracts of dog lung. Nature (London) 220: 919–921.CrossRefGoogle Scholar
  5. Bakhle, Y. S. (1976). The nature of the bradykinin inactivating system in isolated lungs. Br. J. Pharmacol. 56: 349–350 P.Google Scholar
  6. Bakhle, Y. S., and Block, A. J. (1976). Effects of halothane on pulmonary inactivation of noradrenaline and prostaglandin Ez in anaesthetized dogs. Clin. Sci. Mol. Med. 50: 87–90.PubMedGoogle Scholar
  7. Bakhle, Y. S., and Hartiala, J. (1976). The pharmacokinetic function of lung. Proceedings of International Symposium at Turku, 1975. Agents and Actions. 6: 493–559.CrossRefGoogle Scholar
  8. Bakhle, Y. S., and Smith, T. W. (1972). Release of spasmogenic substances induced by vasoactive amines from rat lungs. Br. J. Pharmacol. 46: 543–544 P.Google Scholar
  9. Bakhle, Y. S., and Vane, J. R. (1974). Pharmacokinetic function of the pulmonary circulation. Physiol. Rev. 54: 1007–1045.PubMedGoogle Scholar
  10. Bartosch, R., Feldberg, W., and Nagel, E. (1933). Weitere Versuche über das Freiwerden eines histaminähnlichen Stoffes aus der durchströmten Lunge sensibilisieter Meerschweinchen beim Anläsen einer anaphylaktischen Lungenstarre. Arch. für Physiol. 231: 616–629.CrossRefGoogle Scholar
  11. Bedwani, J. R., and Marley, P. B. (1975). Enhanced inactivation of prostaglandin E2 by the rabbit lung during pregnancy or progesterone treatment. Br. J. Pharmacol. 53: 547–554.PubMedGoogle Scholar
  12. Bend, J. R., Hook, G. E. R., Easterling, R. E., Gram, T. E., and Fouts, J. R. (1972). A comparative study of the hepatic and pulmonary microsomal mixed-function oxidase systems in the rabbit. J. Pharmacol. Exp. Ther. 183: 206–217.PubMedGoogle Scholar
  13. Bennett, A. (1965). The metabolism of histamine by guinea-pig and rat lung in vitro. Brit. J. Pharmacol. 24: 147–155.Google Scholar
  14. Bernardi, M. de, Ferrara, A., and Manzo, L. (1972). Aspetti del farmacometabolismo polmonare nel coniglio adulto. Boll. Soc. Ital. Biol. Sper. 48: 102–105.PubMedGoogle Scholar
  15. Biron, P., Campeau, L., and David, P. (1969). Fate of angiotensin I and II in the human pulmonary circulation. Am. J. Cardiol. 24: 544–547.PubMedCrossRefGoogle Scholar
  16. Blackwell, E. W., Briant, R. H., Connolly, M. E., Davies, D. S., and Dollery, C. T. (1974). Metabolism of isoprenaline after aerosol and direct intrabronchial administration in man and dog. Br. J. Pharmacol. 50: 587–591.PubMedGoogle Scholar
  17. Boileau, J.-C., Campeau, L., and Biron, P. (1970). Pulmonary fate of histamine, isoproterenol, physalaemin and substance P. Can. J. Physiol. Pharmacol. 48: 681–684.PubMedGoogle Scholar
  18. Boyle, R. (1660). New experiments physico-mechanicall, touching the spring of the air and its effects (made for the most part in a new pneumatical engine), pp. 350–352. H. Hall, Oxford.Google Scholar
  19. Briant, R. H., Blackwell, E. W., Williams, F. M., Davies, D. S., and Dollery, C. T. (1973). The metabolism of sympathomimetic bronchodilator drugs by the isolated perfused dog lung. Xenobiotica 3: 787–799.PubMedCrossRefGoogle Scholar
  20. Bygdeman, M., Green, K., Toppozada, M., Wiqvist, N., and Bergstrom, S. (1974). The in fluence of prostaglandin metabolites on the uterine response to PGF2e,. A clinical and pharmacokinetic study. Life Sci. 14: 521–531.PubMedCrossRefGoogle Scholar
  21. Collier, J. G., Robinson, B. F., and Vane, J. R. (1973). Reduction of the pressor effects of angiotensin I in man by synthetic nonapeptide (BPP9a or SQ 20881) which inhibits converting enzyme. Lancet 1: 72–74.PubMedCrossRefGoogle Scholar
  22. Cross, S. A. M., Alabaster, V. A., Bakhle, Y. S., and Vane, J. R. (1974). Sites of uptake of3H5–hydroxytryptamine in rat isolated lung. Histochemistry 39: 83–91.PubMedCrossRefGoogle Scholar
  23. Davis, R. B., and Wang, Y. (1965). Rapid pulmonary removal of 5–hydroxytryptamine in the intact dog. Proc. Soc. Exp. Biol. Med. 118: 799–800.Google Scholar
  24. Egerton-Vernon, J. M., and Bedwani, J. R. (1975). Prostaglandin 15–hydroxydehydrogenase activity during pregnancy in rabbits and rats. Eur. J. Pharmacol. 33: 405–408.PubMedCrossRefGoogle Scholar
  25. Errington, M. L., and Rocha e Silva, M., Jr. (1974). On the role of vasopressin and angiotensin in the development of irreversible haemorrhagic shock. J. Physiol. 242: 119–141.PubMedGoogle Scholar
  26. Ferreira, S. H., Greene, L. J., Alabaster, V.A., Bakhle, Y. S., and Vane, J. R. (1970). Activity of various fractions of Bradykinin Potentiating Factor against angiotensin I converting enzyme. Nature (London) 225: 379–380.CrossRefGoogle Scholar
  27. Ferreira, S. H., Ng, K. K. F., and Vane, J. R. (1973). The continuous bioassay of the release and disappearance of histamine in the circulation. Br. J. Pharmacol. 49: 543–553.PubMedGoogle Scholar
  28. Fishman, A. P., and Pietra, G. G. (1974). Handling of bioactive materials by the lung. N. Engl. J. Med. 291: 884–890, 953–959.CrossRefGoogle Scholar
  29. Fouts, J. R., and Devereux, T. R. (1972). Developmental aspects of hepatic and extrahepatic drug metabolizing enzyme systems, microsomal enzymes and components in rabbit liver and lung during the first month of life. J. Pharmacol. Exp. Ther. 183: 458–468.PubMedGoogle Scholar
  30. Gaddum, J. H., Hebb, C. O., Silver, A., and Swan, A. A. B. (1953). 5–Hydroxytryptamine. Pharmacological action and destruction in perfused lungs. Q. J. Exp. Physiol. 38: 255–262.Google Scholar
  31. Gavras, H., Brunner, H. R., Laragh, J. H., Sealey, J. E., Gavras, I., and Vukovich, R. A. (1974). An angiotensin converting enzyme inhibitor to identify and treat vasoconstrictor and volume factors in hypertensive patients. N. Engl. J. Med. 291: 817–821.PubMedCrossRefGoogle Scholar
  32. Giannopoulos, G. (1973). Glucocorticoid receptors in lung. I. Specific binding of glucocorti- coids to cytoplasmic components of rabbit fetal lung. J. Biol. Chem. 248: 3876–3883.PubMedGoogle Scholar
  33. Giannopoulos, G., Mulay, S., and Solomon, S. (1973). Glucocorticoid receptors in lung. II. Specific binding of glucocorticoids to nuclear components of rabbit lung. J. Biol. Chem. 248: 5016–5023.PubMedGoogle Scholar
  34. Gillis, C. N., Cronau, L. H., Greene, N. M., and Hammond, G. L. (1974). Removal of 5hydroxytryptamine and norepinephrine from the pulmonary vascular space of man: Influence of cardiopulmonary bypass and pulmonary arterial pressure on these processes. Surgery 76: 608–616.PubMedGoogle Scholar
  35. Gillis, C. N., Greene, N. M., Cronau, L. H., and Hammond, G. L. (1972). Pulmonary extraction of 5–hydroxytryptamine and norepinephrine before and after cardiopulmonary bypass in man. Circ. Res. 30: 666–674.PubMedGoogle Scholar
  36. Goble, A. J., Hay, D. R., and Sandler, M. (1955). 5-Hydroxytryptamine metabolism in acquired heart disease associated with argentaffin carcinoma. Lancet ii:1016–1017.CrossRefGoogle Scholar
  37. Hamberg, M., Svensson, J., and Samuelsson, B. (1975). Thromboxanes, a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc. Nat. Acad. Sci. USA 72: 2994–2998.PubMedCrossRefGoogle Scholar
  38. Hartiala, J.. and Nienstedt, W. (1976). Metabolism of testosterone by human lung in vitro. Int. J. Biochem. 7: 317–319.CrossRefGoogle Scholar
  39. Hartiala, J., Uotila, P., and Nienstedt, W. (1976). Absorption and metabolism of steroids administered intratracheally to rat isolated lungs. Br. J. Pharmacol. 57: 442 P.Google Scholar
  40. Hayes, A., and Cooper, R. G. (1971). Studies on the absorption, distribution and excretion of propranolol in rat, dog and monkey. J. Pharmacol. Exp. Ther. 176: 302–311.PubMedGoogle Scholar
  41. Heinemann, H. O., and Fishman, A. P. (1969). Nonrespiratory functions of mammalian lung. Physiol. Rev. 49: 1–47.Google Scholar
  42. Hodge, R. L., Ng, K. K. F., and Vane, J. R. (1967). Disappearance of angiotensin from the circulation of the dog. Nature (London) 215: 138–141.CrossRefGoogle Scholar
  43. Hughes, J., Gillis, C. N., and Bloom, F. E. (1969). The uptake and disposition of dlnoradrenaline in perfused rat lung. J. Pharmacol. Exp. Ther. 169: 237–248.PubMedGoogle Scholar
  44. Jose, P., Niederhauser, U., Piper, P. J., Robinson, C., and Smith, A. P. (1976). Inactivation of prostaglandin F2, in the human pulmonary circulation. Br. J. Clin. Pharmacol. 3: 342–343 P.Google Scholar
  45. Junod, A. F. (1972). Accumulation of “C-imipramine in isolated perfused rat lung. J. Pharmacol. Exp. Ther. 183: 182–187.PubMedGoogle Scholar
  46. Junod, A. F. (1975). Metabolism production and release of hormones and mediators in the lung. Am. Rev. Respir. Dis. 112: 93–108.PubMedGoogle Scholar
  47. Junod, A. F., and de Haller, R. (1975). Lung metabolism (Proceedings of the V International Symposium at Davos, 1974). Academic Press, New York/London.Google Scholar
  48. Kellaway, C. H., and Trethewie, E. R. (1940). The liberation of a slow reacting smooth muscle stimulating substance in anaphylaxis. Q. J. Exp. Physiol. 30: 121–145.Google Scholar
  49. Liggins, G. C., and Howie, R. N. (1972). A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics 50: 515–525.PubMedGoogle Scholar
  50. Lindsey, H. E., and Wyllie, J. H. (1970). Release of prostaglandins from embolized lungs. Br. J. Surg. 57: 738–741.PubMedCrossRefGoogle Scholar
  51. Lower, R. (1669). Tractatus de Corde Item de Motu & Colore Sanguinis et Chyli in Eum Transitu, Vol. XVI, p. 220. J. Allestry, London.Google Scholar
  52. Martin, L. E., Tanner, R. J. N., Clarke, T. J. H., and Cochrane, G. M. (1974). Absorption and metabolism of orally administered beclomethasone dipropionate. Clin. Pharmacol. Ther. 15: 267–275.PubMedGoogle Scholar
  53. Miller, E. D., Jr., Samuels, A. I., Haber, E., and Barger, A. C. (1975). Inhibition of angiotensin-conversion and prevention of renal hypertension. Am. J. Physiol. 228: 448–453.PubMedGoogle Scholar
  54. Miyabo, S., Kishida, S., and Hisada, T. (1975). Metabolism and conjugation of 20/3–dihydrocortisol by various dog tissues in vitro. J. Steroid Biochem. 6: 143–146.Google Scholar
  55. Modig, J., Busch, C., Olerud, S., and Saldeen, T. (1974). Pulmonary microembolism during orthopaedic trauma. Acta Anaesthesiol. Scand. 18: 133–143.PubMedCrossRefGoogle Scholar
  56. Modig. J., Olerud, S., and Malmberg, P. (1973). Sudden pulmonary dysfunction in prosthetic hip replacement surgery. Acta Anaesthesiol. Scand. 17: 276–282.Google Scholar
  57. Naito, H., and Gillis, C. N. (1973). Effects of halothane and nitrous oxide on removal of noradrenaline from the pulmonary circulation. Anesthesiology 39: 575–580.PubMedCrossRefGoogle Scholar
  58. Nakano, J., and McCloy, R. B., Jr. (1973). Effects of indomethacin on the pulmonary vascular and airway resistance responses to pulmonary microembolization. Proc. Soc. Exp. Biol. Med. 143: 218–221.PubMedGoogle Scholar
  59. Ng, K. K. F., and Vane, J. R. (1967). The conversion of angiotensin Ito angiotensin II. Nature (London) 216: 762–766.CrossRefGoogle Scholar
  60. Ng, K. K. F., and Vane, J. R. (1968). Fate of angiotensin I in the circulation. Nature (London) 218: 144–150.CrossRefGoogle Scholar
  61. Nicholas, T. E., and Kim, P. A. (1975). The metabolism of 3H-cortisone and 3H-cortisol by the isolated perfused rat and guinea pig lungs. Steroids 25: 387–402.PubMedCrossRefGoogle Scholar
  62. Nicholas, T. E., Strum, J. M., Angelo, L. S., and Junod, A. F. (1974). Site and mechanism of uptake of 3H-1–norepinephrine by isolated perfused rat lungs. Circ. Res. 35: 670–680.PubMedGoogle Scholar
  63. Oates, J. A., and Butler, T. C. (1967). Pharmacologic and endocrine aspects of carcinoid syndrome. Adv. Pharmacol. 5: 109–128.PubMedCrossRefGoogle Scholar
  64. Ondetti, M. A., and Engel, S. L. (1975). Bradykinin analogs containing ß-homo-amino acids. J. Med. Chem. 18: 761–763.PubMedCrossRefGoogle Scholar
  65. Ondetti, M. A., Williams, N. J., Sabo, E. F., Pluscec, J., Weaver, E. R., and Kocy, O. (1971). Angiotensin converting enzyme inhibitors from the venom of Bothrops jararaca. Isolation, elucidation of structure and synthesis. Biochemistry 10: 4033–4039.PubMedCrossRefGoogle Scholar
  66. Orton, T. C., Anderson, M. W., Pickett, R. D., Eling, T. E., and Fouts, J. R. (1973). Xenobiotic accumulation and metabolism by isolated perfused rabbit lungs. J. Pharmacol. Exp. Ther. 186: 482–497.PubMedGoogle Scholar
  67. Piper, P. J., and Vane, J. R. (1969). Release of additional factors in anaphylaxis and its antagonism by anti-inflammatory drugs. Nature (London) 223: 29–35.CrossRefGoogle Scholar
  68. Piper, P. J., and Vane, J. R. (1971). The release of prostaglandins from lung and other tissues. Ann. N. Y. Acad. Sci. 180: 363–385.CrossRefGoogle Scholar
  69. Pulkkinen, M. O. (1966). Sulphate conjugation during pregnancy and under the influence of cortisone. Acta Physiol. Scand. 66: 120–122.PubMedCrossRefGoogle Scholar
  70. Rddegran, K. (1972). The effect of acetylsalicylic acid on the peripheral and pulmonary vascular responses to thrombin. Acta Anaesthesiol. Scand. 16: 140–146.CrossRefGoogle Scholar
  71. Ryan, J. W., Ryan, U. S., Schultz, D. R., Whitaker, C., Chung, A., and Dorer, F. E. (1975). Subcellular localization of pulmonary angiotensin-converting enzyme (kininase II). Biochem. J. 146: 497–499.PubMedGoogle Scholar
  72. Said, S. I. (1974). Endocrine role of lung in disease. Am. J. Med. 57: 453–465.PubMedCrossRefGoogle Scholar
  73. Said, S. I., Yoshida, T., Kitamura, S., and Vreim, C. (1974). Pulmonary alveolar hypoxia: Release of prostaglandins and other humoral mediators. Science 185: 1181–1182.PubMedCrossRefGoogle Scholar
  74. Sandler, M. (1972). Migraine—a pulmonary disease? Lancet I: 618–619.CrossRefGoogle Scholar
  75. Sandler, M., Karim, S. M. M., and Williams, E. D. (1968). Prostaglandins in amine-peptidesecreting tumors. Lancet II: 1053–1054.CrossRefGoogle Scholar
  76. Soffer, R. L. (1976) Angiotensin converting enzyme. Am. Rev. Biochem. 73–94.Google Scholar
  77. Starling, E. H., and Verney, E. B. (1925). The secretion of urine as studied on the isolated kidney. Proc. Royal Soc., London Series B 97: 321–363.Google Scholar
  78. Strum, J. M., and Junod, A. F. (1972). Radioautographic demonstration of 5-hydroxytryptamine-3H uptake by pulmonary endothelial cells. J. Cell Biol. 54: 456–467.PubMedCrossRefGoogle Scholar
  79. Sun, F. F., and Armour, S. B. (1974). Prostaglandin 15-hydroxy dehydrogenase and A”reductase levels in the lungs of maternal, fetal and neonatal rabbits. Prostaglandins 7: 327–338.PubMedCrossRefGoogle Scholar
  80. Thomas, D. P., and Vane, J. R. (1%7). 5–Hydroxytryptamine in the circulation of the dog. Nature (London) 216: 335–338.Google Scholar
  81. Vane, J. R. (1969). The release and fate of vasoactive hormones in the circulation. Br. J. Pharmacol. 35: 209–242.PubMedGoogle Scholar
  82. Vane, J. R. (1970). The alteration or removal of vasoactive substances by the pulmonary circulation. In Importance of fundamental principles in drug evaluation. D. H. Tedeschi and R. E. Tedeschi, eds., pp. 217–236. Raven Press, New York.Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • Y. S. Bakhle
    • 1
  1. 1.Department of Pharmacology, Institute of Basic Medical SciencesRoyal College of Surgeons of EnglandLondonEngland

Personalised recommendations