Protein Semiconduction: An Alternative Explanation of Electrical Coupling

  • Alberto L. Politoff


Cell communication, in the sense of electrical coupling and easy passage of substances from cell to cell, is still a fascinating mystery. Most cells of most organisms are electrically coupled, but we do not know either why or how. [In the special case of electrical synapses, we think we know why (Bennett, 1973a), but certainly we do not know how.] In some coupled cell systems we can watch exogenous substances (particularly fluorescent dyes such as Procion Yellow MX4R) flowing from one cell to the other, and thus it has been concluded that electrically coupled cells must have highly permeable membrane junctions (Loewenstein, 1973; Bennett, 1973a). Shortly after the initial experimental observations, a very elegant and fruitful working hypothesis was proposed (Loewenstein, 1966; Payton et al., 1969). The hypothesis postulated the existence of hydrophilic channels connecting the communicating cells, so that a cytoplasmic particle could travel from one cell to the other without leaving the intracellular environment. These transjunctional channels were supposed to be a short and convenient route for both small ions (thus explaining electrical coupling) and larger particles (explaining high junctional permeability), which could travel this way from one cell to the other and thus avoid a detour through the extracellular milieu.


Synaptic Vesicle Nerve Cord Electrical Coupling Electrical Synapse Hydrophilic Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auerbach, A. A., and Bennett, M. V. L., 1969, A rectifying electrotonic synapse in the central nervous system of a vertebrate, J. Gen. Physiol. 53:211.PubMedCrossRefGoogle Scholar
  2. Bennett, M. V. L., 1973a, Permeability and structure of electrotonic junctions and intercellular movements of tracers, in: Intracellular Staining in Neurobiology (S. B. Kater, ed.), pp. 115–134, Springer-Verlag, Berlin and New York.Google Scholar
  3. Bennett, M. V. L., 1973b, Function of electrotonic junctions in embryonic and adult tissues, Fed. Proc. 32:65.Google Scholar
  4. Bennett, M. V. L., and Auerbach, A. A., 1969, Calculation of electrical coupling of cells separated by a gap, Anal Rec. 136:152.Google Scholar
  5. Bennett, M. V. L., Spira, M. E., and Pappas, G. D., 1972, Properties of electrotonic junctions between embryonic cells of fundulus, Dev. Biol. 29:419.PubMedCrossRefGoogle Scholar
  6. Cooke, R., and Kuntz, I. D., 1974, The properties of water in biological systems, Annu. Rev. Biophys. Bioeng. 3:95.PubMedCrossRefGoogle Scholar
  7. Cope, F. W., 1969, Calculation and measurement of semiconductor activation energy and electron mobility in cytochrome oxidase, with evidence that charge carriers are pola-rons, which may couple oxidation to phosphorylation, Bull Math. Biophys. 31:761.PubMedCrossRefGoogle Scholar
  8. Dracher, L. A., Jasaitis, A. A., Kaulen, A. D., Kondrashin, A. A., Liberman, E. A., Nemecek, I. B., Ostroiemov, S. A., Semenov, A. Yu. and Skulachev, V. P., 1974, Direct measurement of electric current generation by cytochrome oxidase, H +-ATPase and bacterio-rhodopsin, Nature (London) 249:321.CrossRefGoogle Scholar
  9. Drost-Hansen, W., 1973, Phase transitions in biological systems: Manifestations of cooperative process in vicinal water, Ann. NY. Acad. Sci. 204:100.PubMedCrossRefGoogle Scholar
  10. Einstein, A., 1926, Investigations on the Theory of Brownian Movement, Dover, New York, (republished in 1956).Google Scholar
  11. Eley, D. D., and Pethig, R., 1971, Microwave Hall mobility measurements on rat liver mitochondria and spinach chloroplasts, Bioenergetics 2:39.CrossRefGoogle Scholar
  12. Evans, W. H., and Gurd, J. W., 1972, Preparation and properties of nexuses and lipid-enriched vesicles from mouse liver plasma membranes, Biochem. J. 128:691.PubMedGoogle Scholar
  13. Fain, G. L., 1975, Quantum sensitivity of rods in the toad retina, Science 187:838.PubMedCrossRefGoogle Scholar
  14. Fermandez, H. L., Huneeus, F. C., and Davison, P. F., 1970, Studies on the mechanism of axoplasmic transport in the crayfish nerve cord, J. Neurobiol. 1:395.CrossRefGoogle Scholar
  15. Finch, E. D., and Schneider, A. S., 1975, Mobility of water bound to biological membranes: A proton NMR relaxation study, Biochem. Biophys. Acta 406:146.PubMedCrossRefGoogle Scholar
  16. Furshpan, E. J., and Potter, D. D., 1959, Transmission at the giant motor synapses of crayfish, J. Physiol. (London) 145:289.Google Scholar
  17. Goodenough, D. A., 1974, Bulk isolation of mouse hepatocyte gap junctions. Characterization of the principal protein, connexin, J. Cell Biol. 61:557.PubMedCrossRefGoogle Scholar
  18. Goodenough, D. A., and Stoeckenius, W., 1972, The isolation of mouse hepatocyte gap junctions. Preliminary chemical characterization and X-ray diffraction, J. Cell Biol. 54:646.PubMedCrossRefGoogle Scholar
  19. Goodenough, D. A., Caspar, D. L. D., Makowski, L., and Phillips, W. C, 1974, X-Ray diffraction of isolated gap junctions, J. Cell Biol. 63:115.Google Scholar
  20. Gutman, F., and Lyons, L. E., 1967, Organic Semiconductors, Wiley, New York.Google Scholar
  21. Iberall, A., and Schindler, A., 1973, Physics of Membrane Transport, General Technical Services, Inc., Upper Darby, Pennsylvania.Google Scholar
  22. Jamakosmanovic, A., and Loewenstein, W. R., 1968, Intercellular communication and tissue growth. III. Thyroid cancer, J. Cell Biol. 38:556.PubMedCrossRefGoogle Scholar
  23. Kirkpatrick, J. B., and Stern, L. Z., 1973, Axoplasmic flow in human sural nerve, Arch. Neurol. 28:308.PubMedCrossRefGoogle Scholar
  24. Lardy, H. A., and Ferguson, S. M., 1969, Oxidative phosphorylation in mitochondria, Annu. Rev. Biochem. 38:991.PubMedCrossRefGoogle Scholar
  25. Levich, V. G., 1962, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  26. Loewenstein, W. R., 1966, Permeability of membrane junctions, Ann. N.Y. Acad. Sci. 137:441.PubMedCrossRefGoogle Scholar
  27. Loewenstein, W. R., 1973, Membrane junctions in growth and differentiation, Fed. Proc. 32:60.PubMedGoogle Scholar
  28. McNutt, N. S., and Weinstein, R. S., 1973, Membrane ultrastructure at mammalian intercellular junctions, Prog. Biophys. Mol. Biol. 26:45.PubMedCrossRefGoogle Scholar
  29. Mulloney, B., 1970, The structure of the giant fibres of earthworms as disclosed by Procion Yellow injections, J. Physiol. (London) 210:22.Google Scholar
  30. Newcomb, E. H., Steer, M. W., Hepler, P. K., and Wergin, W. P., 1968, An atypical crista resembling a “tight junction” in bean root mitochondria, J. Cell Biol. 39:35.PubMedCrossRefGoogle Scholar
  31. Pappas, G. D., Asada, Y. and Bennett, M. V. L., 1971, Morphological correlates of increased coupling resistance at an electrotonic synapse, J. Cell Biol. 49:173.CrossRefGoogle Scholar
  32. Pappenheimer, J. R., Renkin, E. M., and Borrero, L. M., 1951, Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability, Am. J. Physiol. 167:13.PubMedGoogle Scholar
  33. Payton, B. W., Bennett, M. V. L., and Pappas, G. D., 1969, Permeability and structure of junctional membranes at an electrotonic synapse, Science 166:1641.PubMedCrossRefGoogle Scholar
  34. Politoff, A. L., Pappas, G. D., and Bennett, M. V. L., 1972, Cobalt: A tracer for light and electron microscopy that can cross an electrotonic synapse, J. Cell Biol. 55:204a.Google Scholar
  35. Politoff, A., Pappas, G. D., and Bennett, M. V. L., 1974, Cobalt ions cross an electrotonic synapse if cytoplasmic concentration is low, Brain Res. 76:343.PubMedCrossRefGoogle Scholar
  36. Ringham, G. L., 1975, Localization and electrical characteristics of a giant synapse in the spinal cord of the lamprey, J. Physiol. (London) 251:395.Google Scholar
  37. Robertson, J. D., 1961, Ultrastructure of excitable membranes and the crayfish median-giant synapse, Ann. N.Y. Acad. Sci. 94:339.PubMedCrossRefGoogle Scholar
  38. Robertson, J. D., 1963, The occurrence of a subunit pattern in the unit membranes of club endings in the Mauthner cell synapses in goldfish brains, J. Cell Biol. 19:201.PubMedCrossRefGoogle Scholar
  39. Robertson, J. D., 1966, Granulo-fibrillar and globular substructure in unit membranes, Ann.N.Y. Acad. Sci. 137:421.PubMedCrossRefGoogle Scholar
  40. Rosenberg, B., and Postow, E., 1973, Semiconductivity in proteins and nucleic acids, in:Experimental Methods in Biophysical Chemistry (C. Nicolau, ed.), Wiley, New York.Google Scholar
  41. Sah, C. T., Noyce, R. N., and Shockley, W., 1957, Carrier generation and recombination in P-N junctions and P-N junction characteristics, Proc. IRE 45:1228.CrossRefGoogle Scholar
  42. Saito, A., Smigel, M., and Fleischer, S., 1974, Membrane junctions in the intermembrane space of the mitochondria from mammalian tissues, J. Cell Biol. 60:653.PubMedCrossRefGoogle Scholar
  43. Sibaoka, T., 1966, Action potentials in plant organs, in: Symposia of the Society for ExperimentalBiology, No. 20, pp. 49–73, Academic Press, New York.Google Scholar
  44. Slack, C., and Palmer, J. F., 1969, The permeability of intercellular junctions in the early embryo of Xenopus laevis, studied with a fluorescent tracer, Exp. Cell Res. 55:416.PubMedCrossRefGoogle Scholar
  45. Smith, T. G., Bauman, F., and Fourtes, M. G., 1965, Electrical connections between visual cells in the ommatidium of Limulus, Science 147:1446.Google Scholar
  46. Solomon, A. K., Milgram, J., and Kirkwood, D. H., 1975, Observations on Levitt’s “new theory of transport,” Biochim. Biophys. Acta 406:157.PubMedCrossRefGoogle Scholar
  47. Stead, C. V., 1973, The chemistry of reactive dyes and its relevance to intracellular staining techniques, in: Intracellular staining in Neurobiology (S. B. Kater and C. Nicholson, eds.), pp. 115–134, Springer-Verlag, Berlin and New York.Google Scholar
  48. Suhai, S., 1975, Theoretical investigations of semiconductive properties in proteins. I. Electrical conductivity, charge carrier mobility and free paths in B-polyglycine, Biopolymers 13:1731.CrossRefGoogle Scholar
  49. Szent-Gyorgyi, A., 1941, The study of energy levels in biochemistry, Nature (London) 148:157.CrossRefGoogle Scholar
  50. Szent-Gyorgyi, A., 1968, Bioelectronics, Academic Press, New York.Google Scholar
  51. Van Venrooij, G. E. P. M., Hax, W. M. A., Schouten, V.J. A., Van Der Gon, J. J. Denier, and Van Der Vorst, H. A., 1975, Absence of cell communication for fluorescein and dansylated amino acids in an electrotonic coupled cell system, Biochim. Biophys. Acta 394:620.PubMedCrossRefGoogle Scholar
  52. Virchow, R., 1852, Lieber parenchymatöse Entzündung, Vir chows Arch. Pathol. Anat. Physiol. 4:261.CrossRefGoogle Scholar
  53. Woessner, D. E., and Snowden, B. S., Jr., 1973, A pulsed NMR study of dynamics and ordering of water molecules in interfacial systems, Ann. N.Y. Acad. Sci. 204:113.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Alberto L. Politoff
    • 1
  1. 1.Department of PhysiologyBoston University Medical Center, School of MedicineBostonUSA

Personalised recommendations