Intercellular Communication in Heart Muscle

  • Walmor C. De Mello


The concept of heart muscle as an anatomical syncytium dominated the physiological thought for many years.


Cardiac Muscle Heart Muscle Intercellular Communication Heart Cell Intercellular Junction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, P., 1970, A fine structural study of adhesion cell junctions in heterotypic cell aggregates, J. Cell Biol 47:197.PubMedCrossRefGoogle Scholar
  2. Baker, P. F., Blautstein, M. P., Hodgkin, A. L., and Steinhardt, R. A., 1969, The influence of calcium on sodium efflux in squid axons, J. Physiol. (London) 200:431.Google Scholar
  3. Barr, L., and Berger, W., 1964, The role of current flow in the propagation of cardiac muscle action potentials, Pflügers Arch. Ges. Physiol. 279:192.CrossRefGoogle Scholar
  4. Barr, L., Dewey, M. M., and Berger, W., 1965, Propagation of action potentials and the structure of the nexus in cardiac muscle, J. Gen. Physiol. 48:797.PubMedCrossRefGoogle Scholar
  5. Bassinghtwaighte, J. B., and Reuter, H., 1972, Calcium movements and excitation contraction coupling in cardiac cells, in: Electrical Phenomena in the Heart (W. C. De Mello, ed.), pp. 353–395, Academic Press, New York.Google Scholar
  6. Bennett, M. V. L., 1966, Physiology of electrotonic junctions, Ann. N.Y. Acad. Sci. 137:509.PubMedCrossRefGoogle Scholar
  7. Bennett, M. V. L., 1972, A comparison of electrically and chemically mediated transmission, in: Structure and Function of Synapses (G. D. Pappas and D. P. Purpura, eds.), pp. 221–256, Raven Press, New York.Google Scholar
  8. Bennett, M. V. L., 1973, Function of electrotonic junctions in embryonic and adult tissues,Fed. Proc. 32:1.Google Scholar
  9. Bennett, M. V. L., and Dunham, P. B., 1970, Sucrose permeability of junctional membrane at an electrotonic synapse, Biophys. J. 10:117a.Google Scholar
  10. Bennett, M. V. L., Dunham, P. B., and Pappas, G. D., 1967, Ion fluxes through a tight junction, J. Gen. Physiol. 50:1094.CrossRefGoogle Scholar
  11. Berkinblit, M. B. S., Kovalev, S. A., Smolyaninov, V. V., and Chailakhyan, L. M., 1965, Input resistance of syncytial structures, Biofiziha 10:341.Google Scholar
  12. Bonke, F. I. M., 1973, Electrotonic spread in the sinoatrial node of the rabbit’s heart, PflügersArch. Ges. Phusiol. 339:17.CrossRefGoogle Scholar
  13. Brightman, M. W., and Reese, T. S., 1969, Junctions between intimately apposed cell membranes in the vertebrate brain, J. Cell Biol. 40:648.PubMedCrossRefGoogle Scholar
  14. Cavanaugh, M. W., 1955, Pulsation, migration and division in dissociated chick embryo heart cells in vitro, J. Exp. Biol. 128:573.Google Scholar
  15. Coman, D. R., 1944, Decreased mutual adhesiveness, a property of cells from squamous cell carcinomas, Cancer Res. 4:625.Google Scholar
  16. Chalcroft, J. P., and Bullivant, S., 1970, An interpretation of liver cell membrane and junction structure based on observation of freeze-fracture replicas of both sides of the fracture, J. Cell Biol. 47:49.PubMedCrossRefGoogle Scholar
  17. Challice, C. E., and Edwards, G. A., 1961, The micromorphology of the developing ventricular muscle, in: The Specialized Tissues of the Heart (A. Paes de Carvalho, W. C. De Mello, and B. Hoffmann, eds.), pp. 44–73, Elsevier, Amsterdam.Google Scholar
  18. De Haan, R. L., and Hirakow, R., 1972, Synchronization of pulsation rates in isolated cardiac myocytes, Exp. Cell Res. 70:214.CrossRefGoogle Scholar
  19. Déleze, J., 1965, Calcium ions and the healing-over of heart fibres, in: Electrophysiology of theHeart (B. Taccardi and G. Marchetti, eds.), pp. 147–148, Pergamon Press, London.Google Scholar
  20. De Mello, W. C, 1971, The sealing process in heart and other muscle fibers, in: Research inPhysiology (F. F. Kao, K. Koisumi, and M. Vassalle, eds.), pp. 275–288, Aulo Gaggi Pub., Bologna.Google Scholar
  21. De Mello, W. C., 1972a, Membrane lipids and cardiac electrogenesis, in:Electrical Phenomenain the Heart (W. C. De Mello, ed.), pp. 89–109, Academic Press, New York.Google Scholar
  22. De Mello, W. C., 1972b, The healing-over process in cardiac and other muscle fibers, in:Electrical Phenomena in the Heart (W. C. De Mello, ed.), pp. 323–351, Academic Press, New York.Google Scholar
  23. De Mello, W. C., 1973, Membrane sealing in frog skeletal muscle fibers, Proc. Nat. Acad. Sci. U.S.A. 70:4.CrossRefGoogle Scholar
  24. De Mello, W. C., 1974, Electrical uncoupling in heart fibers produced by intracellular injection of Na or Ca, Fed. Proc. 17:3.Google Scholar
  25. De Mello, W. C., 1975a, Uncoupling of heart cells produced by intracellular sodium injection,Experkntia 31:460.CrossRefGoogle Scholar
  26. De Mello, W. C., 1975b, Effect of intracellular injection of calcium and strontium on cell communication in heart, J. Physiol. (London) 250:231.Google Scholar
  27. De Mello, W. C., 1976a, Sodium extrusion and cell communication in heart, Fed. Proc. 35:3.Google Scholar
  28. De Mello, W. C., 1976b, Sodium pump: Its importance to intercellular communication in heart fibers. Experientia 32:355.CrossRefGoogle Scholar
  29. De Mello, W. C., and Dexter, D., 1970, Increased rate of sealing in beating heart muscle of the frog, Circ. Res. 26:481.PubMedGoogle Scholar
  30. De Mello, W. C., Motta, G., and Chapeau, M., 1969, A study of the healing-over of myocardial cells of toads, Circ. Res. 24:475.PubMedGoogle Scholar
  31. Dewey, M. M., and Barr, L., 1962, Intercellular connection between smooth muscle cells: The nexus, Science 137:670.PubMedCrossRefGoogle Scholar
  32. Dreifuss, J. J., and Girardier, L., and Forsmann, W. G., 1966, Etude le la propagation de l’excitation dans le ventricle de rat an moyen de solution hypertoniques, Pflügers Arch. Ges. Physiol. 292:13.CrossRefGoogle Scholar
  33. Dudel, J., and Trautwein, W., 1958, Der Mechanismus der automatischen rhythmischen Impulsbildung der Herzmuskelfaser, Pflügers Arch. Ges. Physiol. 267:553.CrossRefGoogle Scholar
  34. Dudel, J., Peper, K., Rudel, R., and Trautwein, W., 1966, Excitatory membrane current in heart muscle (Purkinje fibers), Pflügers Arch. Ges. Physiol. 292:255.CrossRefGoogle Scholar
  35. Ebner, V., 1900, Ueber die Kitdinien der Herzmuskelfasern, Sitzungsber. Wien. Ahad. Math.Nat. Kl. 109:3.Google Scholar
  36. Engelmann, T. W., 1877, Vergleichende Untersuchungen zur Lehre von der Muskel- und Nervenelektricität, Pflügers Arch. Ges. Physiol. 15:116.CrossRefGoogle Scholar
  37. Escobar, I., De Mello, W. C., and Pérez, B., 1972, Healing-over and muscle contraction in toad hearts, Circ. Res. 31:389.PubMedGoogle Scholar
  38. Fawcett, D. W., 1966, The Cell: Its Organelles and Inclusions, p. 374, Saunders, Philadelphia, Pennsylvania.Google Scholar
  39. Fawcett, D. W., and Selby, C. C., 1958, Observations on the fine structure of turtle atrium, J. Biophys. Biochem. Cytol. 4:63.PubMedCrossRefGoogle Scholar
  40. Fozzard, H. A., 1966, Membrane capacity of the cardiac Purkinje fiber, J. Physiol. (London) 182:255.Google Scholar
  41. Frankenhaeuser, B., and Hodgkin, A. L., 1957, The action of calcium on the electrical properties of the squid axon, J. Physiol. (London) 137:218.Google Scholar
  42. Freygang, W. H., and Trautwein, W., 1970, The structural implications of the linear electric properties of cardiac Purkinje fibers, J. Gen. Physiol. 55:524.PubMedCrossRefGoogle Scholar
  43. Furshpan, E. J., and Potter, D. D., 1968, Low-resistance junctions between cells in embryos and tissue culture, in: Current Topics in Developmental Biology (A. A. Moscona and A. Monroy, eds.), Vol. 3, p. 95, Academic Press, New York.Google Scholar
  44. Galtsoff, P. S., 1925, Regeneration after dissociation (An experimental study on sponges). I. Behavior of dissociated cells of microciona prolifera under normal and altered conditions, J. Exp. Zool. 42:183.CrossRefGoogle Scholar
  45. Gilula, N. B., and Satir, P., 1971, Septate and gap junctions in molluscan gill epithelium, J. Cell Biol. 51:869.PubMedCrossRefGoogle Scholar
  46. Glitsch, H. G., Reuter, H., and Scholz, H., 1970, The effect of the internal sodium concentration on calcium fluxes in isolated guinea-pig auricles, J. Physiol. (London) 209:25.Google Scholar
  47. Godlewski, E., 1901, Ueber die Entwickelung des quergestreifen musculösen Gewebes, Bull. Inst. Acad. Sci. Krakaner Cracovie 39:45.Google Scholar
  48. Godlewski, E., 1902, Die Entwicklung des Skelet-und Herzmuskelgewebes der Saugethiere, Arch. Mikros. Anat. 60: 111.CrossRefGoogle Scholar
  49. Goldman, D. E., 1964, A molecular structural basis for the excitation properties of axons, Biophys. J. 4:167.CrossRefGoogle Scholar
  50. Goodenough, D. A., and Gilula, N. B., 1972, Cell junctions and intercellular communications, in: Membranes and Viruses in Immunopathology (S. B. Day and R. A. Good, eds.), pp. 155–163, Academic Press, New York.Google Scholar
  51. Goodenough, D. A., and Revel, J. P., 1970, A fine structural analysis of intercellular junctions in the mouse liver, J. Cell Biol. 45:272.PubMedCrossRefGoogle Scholar
  52. Goshima, K., 1970, Formation of nexuses and electrotonic transmission between myocardial and FL cells in monolayer culture, Exp. Cell Res. 63:124.PubMedCrossRefGoogle Scholar
  53. Harary, I., and Farley, B., 1963, In vitro studies on single beating rat heart cells. III. Intracellular communication, Exp. Cell Res. 29:466.PubMedCrossRefGoogle Scholar
  54. Hay, E. D., 1968, Organization and fine structure of epithelium and mesenchyme in the developing chick embryo, in: Epithelial-Mesenchymal Interactions (R. Fleischmajer and R. Billingham, eds.), Vol. 2, pp. 31–35, Williams & Wilkin, Baltimore, Maryland.Google Scholar
  55. Heidenhain, M., 1901, Ueber die Structur des menschlichen Herzmuskels, Anat. Am. 20:33.Google Scholar
  56. Heilbrunn, L. V., 1956, In: The Dynamics of Living Protoplasm (L. V. Heilbrunn, ed.), Academic Press, New York.Google Scholar
  57. Heppner, D. B., and Plonsey, R., 1970, Simulation of electrical interaction of cardiac cells, Biophys.J. 10:1057.PubMedCrossRefGoogle Scholar
  58. Herz, R., and Weber, A., 1965, Caffeine inhibition of Ca uptake by muscle reticulum, Fed.Proc. 24:208.Google Scholar
  59. Hogue, M. J., 1947, Intercalated disks in tissue cultures, Anat. Rec. 99:157.PubMedCrossRefGoogle Scholar
  60. Huang, C. Y., 1967, Electron microscopy study of the development of heart muscle of the frog Rana pipiens, J. Ultrastruct. Res. 20:211.CrossRefGoogle Scholar
  61. Hyde, A., Blondel, B., Matter, A., Cheneral, Z., Filloux, B, and Girardier, L., 1969, Homo-and heterocellular junctions in cell cultures: An electrophysiological and morphological study, Prog. Brain Res. 31:282.Google Scholar
  62. Imanaga, I., 1974, Cell-to-cell diffusion of Procion Yellow in sheep and calf Purkinje fibers,J. Membrane Biol. 16:381.CrossRefGoogle Scholar
  63. Jellinek, M., Sperelakis, N., Napolitano, L. M., and Cooper, T., 1968, 3,4-Dihydroxyphenylalanine in cultured ventricular cells from chick embryo heart, J. Neorochem. 15:959.CrossRefGoogle Scholar
  64. Kamiyama, A., and Matsuda, K., 1966, Electrophysiological properties of the canine ventricular fiber, Jap. J. Physiol. 16:407.CrossRefGoogle Scholar
  65. Kanno, Y., and Loewenstein, W. R., 1966, Cell-to-cell passage of large molecules, Nature (London) 212:629.CrossRefGoogle Scholar
  66. Loewenstein, W. R., 1966, Pemeability of membrane junctions, Ann. N.Y. Acad. Sci. 137:441.PubMedCrossRefGoogle Scholar
  67. Loewenstein, W. R., Nakas, M., and Socolar, S. J., 1967, Junctional membrane uncoupling. Permeability transformation at the cell membrane junction, J. Gen. Physiol. 50:1865.PubMedCrossRefGoogle Scholar
  68. Maekawa, M., Nohara, Y., Kawamura, K., and Hayashi, K., 1967, Electron microscope study of the conduction system in mammalian hearts, in: Electrophysiology and Ultrastructure ofthe Heart (T. Sano, V. Mizuhira, and K. Matsuda. eds.), pp. 41–54 Grune & Stratton, New York.Google Scholar
  69. Mark, G. E., and Strasser, F. F., 1966, Pacemaker activity and mitosis in cultures of newborn rat heart ventricle cells, Exp. Cell Res. 44:217.PubMedCrossRefGoogle Scholar
  70. Mark, G. E., Hackney, J. D., and Strasser, F. F., 1967, Morphology and contractile behavior of cultured heart cells, and their response to various oxygen concentrations, in: FactorsInfluencing Myocardial Contractility (R. D. Tanz, F. Kavaler, and J. Roberts, eds.), pp. 301–315, Academic Press, New York.Google Scholar
  71. McNutt, N. S., 1970, Ultrastructure of intercellular junctions in adult and developing cardiac muscle, Am. J. Cardiol. 25:169.PubMedCrossRefGoogle Scholar
  72. McNutt, N. S., and Weinstein, R. S., 1970, The ultrastructure of the nexus. A correlated thin section and freeze cleave study, J. Cell Biol. 47:666.PubMedCrossRefGoogle Scholar
  73. McNutt, N. S., and Weinsten, R. S., 1973, Membrane ultrastructure at mammalian intercellular junctions, in: Progress in Biophysics and Molecular Biology (J. A. Buder and D. Noble, eds.), Vol. 26, pp. 45–101, Pergamon Press, London.Google Scholar
  74. Moore, D., and Ruska, H., 1957, Electron microscope study of mammalian cardiac muscle cells, J. Biophys. Biochem. Cytol. 3:261.PubMedCrossRefGoogle Scholar
  75. Moscona, A., 1962, Analysis of cell recombinations in experimental synthesis of tissues in vitro, J. Cell Comp. Physiol. 60:65.CrossRefGoogle Scholar
  76. Muir, A. R., 1957, An electron microscope study of the embryology of the intercalated disc in the heart of the rabbit, J. Biophys. Biochem. Cytol. 3:193.PubMedCrossRefGoogle Scholar
  77. Muir, A. R., 1965, Further observations on the cellular structure of cardiac muscle, J. Anat. 99:1.Google Scholar
  78. Muir, A. R., 1967, Effects of divalent cations on the ultrastructure of the perfused heart, JAnat. 101:2.Google Scholar
  79. Niedergerke, R., and Harris, E. J., 1957, Accumulation of calcium (or strontium) under conditions of increased contractility, Nature (London) 179:1068.CrossRefGoogle Scholar
  80. Oliveira-Castro, G., and Loewenstein, W., 1971, Junctional membrane permeability. Effects of divalent cations, J. Membrane Biol. 5:51.CrossRefGoogle Scholar
  81. Osterhout, W.J. V., and Hill, S. E., 1930, Salt bridges and negative variations, J. Gen. Physiol. 13:547.PubMedCrossRefGoogle Scholar
  82. Payton, B. W., Bennett, M. V. L., and Pappas, G. D., 1969, Permeability and structure of junctional membranes at an electrotonic synapse, Science 166:1641.PubMedCrossRefGoogle Scholar
  83. Poche, R., and Lindner, E., 1955, Untersuchungen zur Frage der Glanzstreifen des Herzmuskelgewebes beim Warmblüter und beim Kaltblüter, Z. Zellforsch. Mikrosk. Anat. 43:104.PubMedCrossRefGoogle Scholar
  84. Pollack, G. H., and Huntman, L. L., 1973, Intercellular pathways in the heart: Direct evidence for low resistance channels, Experientia 29:1501.PubMedCrossRefGoogle Scholar
  85. Post, R. L., and Jolly, P. C., 1957, The linkage of sodium, potassium, and ammonium active transport across the human erythrocyte membrane, Biochim. Biophys. Acta 25:118.PubMedCrossRefGoogle Scholar
  86. Reuter, H., and Scitz, N., 1968, The dependence of calcium efflux from cardiac muscle on temperature and external ion composition, J. Physiol. (London) 195:451.Google Scholar
  87. Revel, J. P., and Karnovsky, M. J., 1967, Hexagonal array of subunits in intercellular junctions of the mouse heart and liver, J. Cell Biol. 33:67.CrossRefGoogle Scholar
  88. Rose, B., 1971, Intercellular communication and some structural aspects of membrane junctions in a simple cell system, J. Membrane Biol. 5:1.CrossRefGoogle Scholar
  89. Rothschuh, K. E., 1951, Ueber den funktionellen Aufbau des Herzens aus elektrophysiologischen Elementen und über den mechanisms der Erregungleitung im Herzen,Pflügers Arch. Ges. Physiol. 253:238.CrossRefGoogle Scholar
  90. Shanes, A. M., 1958, Electrochemical aspects of physiological and pharmacological action in excitable cells. Part 3. The resting cell and its alteration by extrinsic factors, Pharmacol. Rev. 10:59.PubMedGoogle Scholar
  91. Sjöstrand, F. S., and Andersson, E., 1954, Electron microscopy of the intercalated disks of cardiac muscle tissue, Experientia 10:369.PubMedCrossRefGoogle Scholar
  92. Sjöstrand, F. S., Andersson-Cedergren, E., and Dewey, M. M., 1958, Ultrastructure of the intercalated disc of frog, mouse and guinea-pig cardiac muscle, J. Ultrastruc. Res. 1:271.CrossRefGoogle Scholar
  93. Sperelakis, N., 1972, Electrical properties of embryonic heart cells, in:Electrical Phenomena inthe Heart (W. C. De Mello, ed.), pp. 1–56, Academic Press, New York.Google Scholar
  94. Spira, M. E., and Bennett, M. V. L., 1972, Synaptic control of electrotonic coupling between neurons, Brain Res. 37:294.PubMedCrossRefGoogle Scholar
  95. Stibitz, G. R., and McCann, F. V., 1974, Studies of impedance in cardiac tissue under sucrose gap and computer techniques, Biophys. J. 14:75.PubMedCrossRefGoogle Scholar
  96. Tarr, M., and Sperelakis, N., 1964, Weak electrotonic interaction between contiguous cardiac cells, Am. J. Physiol. 207:691.PubMedGoogle Scholar
  97. Tobias, J. M., Agin, D. P., and Pawlowski, R., 1962, Phospholipid-cholesterol membrane model—Control of resistance by ions and current flow, J. Gen. Physiol. 45:989.PubMedCrossRefGoogle Scholar
  98. Trautwein, W., Kuffler, S. W., and Edwards, C., 1956, Changes in membrane characteristics of heart muscle during inhibition, J. Gen. Physiol. 40:135.PubMedCrossRefGoogle Scholar
  99. Tsien, R., and Weingart, R., 1974, Cyclic AMP: Cell-to-cell movement and inotropic effect in ventricular muscle, studied by a cut-end method, J. Physiol. (London) 242:95.Google Scholar
  100. Van Bremen, V. L., 1953, Intercalated discs in heart muscle studied with the electron microscope, Anat. Rec. 117:49.CrossRefGoogle Scholar
  101. van der Kloot, W. G., and Dane, B., 1964, Conduction of the action potential in the frog ventricle, Science 146:74.CrossRefGoogle Scholar
  102. Weidmann, S., 1952, The electrical constants of Purkinje fibres, J. Physiol. (London) 118:348.Google Scholar
  103. Weidmann, S., 1966, The diffusion of radiopotassium across intercalated discs of mammalian cardiac muscle, J. Physiol. (London) 187:323.Google Scholar
  104. Weidmann, S., 1970, Electrical constants of trabecular muscle from mammalian heart, J. Physiol. (London) 210:1041.Google Scholar
  105. Weingart, R., 1974, The permeability to tetraethylammonium ions of the surface membrane and the intercalated disks of the sheep and calf myocardium, J. Physiol. (London) 240:741.Google Scholar
  106. Weingart, R., 1975, Electrical uncoupling in mammalian heart muscle induced by cardiac glycosides, Experientia 31:715.Google Scholar
  107. Weiss, L., 1967, The Cell Periphery, Metastasis and Other Contact Phenomena (L. Weiss, ed.), pp. 296–301, North-Holland Publ., Amsterdam.Google Scholar
  108. Weiss, P., 1941, Nerve patterns. The mechanism of nerve growth. Third Growth Symposium. Growth 5 (Suppl.):163.Google Scholar
  109. Weiss, P., 1947, The problem of specificity in growth and development, Yale J. Biol. Med. 19:235.PubMedGoogle Scholar
  110. Weiss, P., 1958, Cell contact, Int. Rev. Cytol. 7:391.CrossRefGoogle Scholar
  111. Werner, M., 1910, Besteht die Herzmuskulatur der Säugetiere aus allseitz scharf begrenzten Zellen oder nicht? Arch. Microsk. Anat. 71:101.CrossRefGoogle Scholar
  112. Winegrad, S., 1971, Studies of cardiac muscle with a high permeability to calcium produced by treatment with ethylenediaminetetraacetic acid, J. Gen. Physiol. 58:71.PubMedCrossRefGoogle Scholar
  113. Woodbury, J. W., and Crill, W. E., 1961, On the problem of impulse conduction in the atrium, in: Nervous Inhibition (E. Florey, ed.), pp. 124–135, Pergamon Press, London.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Walmor C. De Mello
    • 1
  1. 1.Department of PharmacologyMedical Sciences CampusSan JuanPuerto Rico

Personalised recommendations