Advertisement

Cell Contact Phenomena and Their Implication in Cell Communication

  • Leonard Weiss
  • James P. Harlos

Abstract

Before junctions can be formed, parts of apposing cell surfaces must make contact with each other; interactions occurring before, during, and after contact also appear to play an important role in junction formation. In this presentation, we will consider various aspects of cell contact from a predominandy biophysical viewpoint. Our approach is iterative in the sense that we move back and forth between physical theory and observations on living cells.

Keywords

Cell Communication Cell Periphery Anionic Site Ehrlich Ascites Tumor Cell Intramembranous Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, A. C., 1969, Lysosomes and cancer, in: Lysosomes in Bio fogy and Pathology (J. T. Dingle and H. B. Fell, eds), pp. 178–204, North-Holland Publ., Amsterdam.Google Scholar
  2. Baier, R. E., and Weiss, I., 1976, Demonstration of the involvement of adsorbed proteins in cell adhesion and cell growth on solid surfaces, in: Advances in Chemistry, Applied Chemistry at Protein Interfaces (R. E. Baier, ed.), pp. 300–307, American Chemical Society.Google Scholar
  3. Balsamo, J., and Lilien, J., 1974a, The binding of tissue-specific adhesive molecules to the cell surface. A molecular basis for specificity, Biochemistry 14:167.CrossRefGoogle Scholar
  4. Balsamo, J., and Lilien, J., 1974b, Functional identification of three components which mediate tissue-type specific embryonic cell adhesion, Nature (London) 251:522.CrossRefGoogle Scholar
  5. Burger, M. M., 1970, Proteolytic enzymes initiating cell division and escape from contact inhibition of growth, Nature (London) 227:170.CrossRefGoogle Scholar
  6. Butterworth, S. T. G., 1970, Changes in liver lysosomes and cell junctions close to an invasive tumor, J.Pathol. 101:227.PubMedCrossRefGoogle Scholar
  7. Cauldwell, C. B., Heckart, P., and Humphreys, T., 1973, Physical properties of sponge aggregation factor. A unique proteoglycan complex, Biochemistry 12:3051.PubMedCrossRefGoogle Scholar
  8. Coman, D. R., 1944, Decreased mutual adhesiveness, a property of cells from squamous cell carcinomas, Cancer Res. 4:625.Google Scholar
  9. Coman, D. R., 1953, Mechanisms responsible for the origin and distribution of blood-borne tumor metastases: A review, Cancer Res. 13:397.PubMedGoogle Scholar
  10. Cone, R. A., 1972, Rotational diffusion of rhodopsin in the visual receptor membrane, Nature New Biol. 236:39.PubMedGoogle Scholar
  11. Cooper, E. H., Bedford, A. J., and Kenny, T. E., 1975, Cell death in normal and malignant tissues, Adv. Cancer Res. 21:59.PubMedCrossRefGoogle Scholar
  12. Danon, D., Goldstein, L., Marikovsky, Y., and Skutelsky, E., 1972, Use of cationized ferritin as a label of negative charges on cell peripheries, J. Ultrastruct. Res. 38:500.PubMedCrossRefGoogle Scholar
  13. DaSilva, P. P., and Nicolson, G. L., 1974, Freeze-etch localization of concanavalin A receptors to the membrane intercalated particles of human erythrocyte ghost membranes, Biochim. Biophys. Acta 363:311.CrossRefGoogle Scholar
  14. Decker, R. S., and Friend, D. S., 1974, Assembly of gap junctions during amphibian neurulation, J. Cell Biol. 62:32.PubMedCrossRefGoogle Scholar
  15. Derjaguin, B. V., and Landau, L., 1941, Theory of the stability of strongly charged lycophobic sols and the adhesion of strongly charged particles in solutions of electrolytes, Acta Physiochim. USSR 14:633.Google Scholar
  16. Edidin, M., and Fambrough, D., 1973, Fluidity of the surface of cultured muscle fibers. Rapid lateral diffusion of marked surface antigens, J. Cell Biol. 57:27.PubMedCrossRefGoogle Scholar
  17. Fell, H. B., and Weiss, L., 1965, The effects of antiserum, alone and with hydrocortisone, on foetal mouse bones in culture, J. Exp. Med. 121:551.PubMedCrossRefGoogle Scholar
  18. Frye, L. D., and Edidin, M., 1970, The rapid mixing of cell surface antigens after formation of mouse-human heterokaryons, J. Cell Sci. 7:319.PubMedGoogle Scholar
  19. Gasic, G. J., Berwick, L., and Sorrentino, M., 1968, Positive and negative colloidal iron as cell surface electron stains, Lab. Invest. 18:63.PubMedGoogle Scholar
  20. Gregory, J., 1975, Interaction of unequal double layers at constant charge, J. Colloid InterfaceSci. 51:44.CrossRefGoogle Scholar
  21. Gullino, P. M., and Grantham, F. H., 1961, Studies on the exchange of fluids between host tumor. 1. A method for growing “tissue-isolated” tumors in laboratory animals, J. Nat.Cancer Inst. 27:679.PubMedGoogle Scholar
  22. Henkart, P., Humphreys, S., and Humphreys, T., 1973, Characterization of sponge aggregation factor. A unique proteoglycan complex, Biochemistry 12:3045.PubMedCrossRefGoogle Scholar
  23. Hogg, R., Healy, T. M., and Fuerstenau, D. W., 1966, Mutual coagulation of colloidal dispersions, Trans. Faraday Soc. 62:1638.CrossRefGoogle Scholar
  24. Holmberg, B., 1961, On the in vitro release of cytoplasmic enzymes from ascites tumor cells as compared with strain L cells, Cancer Res. 21:1386.PubMedGoogle Scholar
  25. Hynes, R. O., 1974, Role of surface alterations in cell transformation: The importance of proteases and surface proteins, Cell 1:147.CrossRefGoogle Scholar
  26. Ito, S., 1965, The enteric surface on cat intestinal microvilli, J. Cell Biol. 27:475. PubMedCrossRefGoogle Scholar
  27. Johnson, R., Hammer, M., Sheridan, J., and Revel, J. O., 1974, Gap junction formation between reaggregated Novikoff hepatoma cells, Proc. Nat. Acad. Sci. U.S.A. 71:4536.CrossRefGoogle Scholar
  28. Lilien, J. E., and Moscona, A. A., 1967, Cell aggregation: Its enhancement by a supernatant from cultures of homologous cells, Science 157:70.PubMedCrossRefGoogle Scholar
  29. Loeb, A. L., 1951, An interionic attraction theory applied to the diffuse layer around colloid particles, J. Colloid Sci. 6:75.CrossRefGoogle Scholar
  30. Loewenstein, W. R., 1968, Communication through cell junctions. Implications in growth and differentiation: The emergence of order in tissues and organs. Dev. Biol. 2(Suppl.):151.Google Scholar
  31. Marchesi, V. T., Tillack, T. W., Jackson, R. L., Segrest, J. P. and Scott, R. E., 1972, Chemical characterization and surface orientation of the major glycoprotein of the human erythrocyte membrane, Proc. Nat. Acad. Sci. U.S.A. 69:1445.CrossRefGoogle Scholar
  32. Maslow, D., and Weiss, L., 1972, Cell exudation and cell adhesion, Exptl. Cell Res. 71:204.PubMedCrossRefGoogle Scholar
  33. Mehrishi, J. N., 1970, Positively charged amino groups on the surface of normal and cancer cells, Eur. J. Cancer 6:127.PubMedCrossRefGoogle Scholar
  34. Mehrishi, J. N., 1972, Molecular aspects of the mammalian cell surface, Prog. Biophys. Mol. Biol. 25:1.PubMedCrossRefGoogle Scholar
  35. Moscona, A. A., 1968, Cell aggregation: Properties of specific cell-ligands and their role in the formation of multicellular systems, Dev. Biol. 18:250.PubMedCrossRefGoogle Scholar
  36. Nicolson, G. L., 1974, The interactions of lectins with animal cell surfaces, Int. Rev. Cytol. 39:89.PubMedCrossRefGoogle Scholar
  37. Nicolson, G. L., and Painter, R. G., 1973, Anionic sites of human erythrocyte membranes. II. Antispectrum-induced transmembrane aggregation of the binding sites for positively charged colloidal particles, J. Cell Biol. 59:395.PubMedCrossRefGoogle Scholar
  38. Papahadjopoulos, D., and Weiss, L., 1969, Amino-groups of the surfaces of phospholipid vesicles, Biochim. Biophys. Acta 183:417.PubMedCrossRefGoogle Scholar
  39. Pethica, B. A., 1961, The physical chemistry of cell adhesion, Expt. Cell Res. 8(Suppl.): 123.CrossRefGoogle Scholar
  40. Roblin, R., Chou, I.-N., and Black, P. H., 1976, Proteolytic enzymes and viral transformation,Adv. Cancer Res. 22:203.CrossRefGoogle Scholar
  41. Sefton, B. M., and Rubin, H., 1970. Release from density dependent growth inhibition by proteolytic enzymes, Nature (London) 227:843.CrossRefGoogle Scholar
  42. Sheridan, J. D., and Johnson, R. G., 1975, Cell junctions and neoplasia, in: Molecular Pathology (R. A. Good and S. B. Day, eds.), pp. 354–378, Thomas, Springfield, Illinois.Google Scholar
  43. Singer, S. J., 1974, The molecular organization of membranes, Annu. Rev. Biochem. 43:805.PubMedCrossRefGoogle Scholar
  44. Slater, J. C., 1939, Introduction to Chemical Physics, McGraw-Hill, New York.Google Scholar
  45. Subjeck, J., and Weiss, L., 1975, The binding of cationized ferritin at the surfaces of Ehrlich ascites tumor cells: The effect of pH and glutaraldehyde fixation, J. Cell. Physiol. 85:529.PubMedCrossRefGoogle Scholar
  46. Sylvén, B., 1968a, Lysosomal enzyme activity in the interstitial fluid of solid mouse tumour transplants, Eur. J. Cancer 4:463.CrossRefGoogle Scholar
  47. Sylvén, B., 1968b, Cellular detachment by purified lysosomal cathepsin B, Eur. J. Cancer 4:559.CrossRefGoogle Scholar
  48. Sylvén, B., 1973, Biochemical and enzymatic factors involved in cellular detachment, in:Chemotherapy of Cancer Dissemination and Metastasis (S. Garattini and G. Franchi, eds.), pp. 129–138, Raven Press, New York.Google Scholar
  49. Sylvén, B., and Bois, I., 1960. Protein content and enzymatic assays of interstitial fluid from some normal tissues and transplanted mouse tumours, Cancer Res. 20:831.PubMedGoogle Scholar
  50. Sylvén, B., Snellman, O., and Strauli, P., 1974, Immunofluorescent studies on the occurrence of cathepsin B at tumor cell surfaces, Virchows Arch. B. Cell Path. 17:97.Google Scholar
  51. Verwey, E. J. W., and Overbeek, J. Th. G., 1948, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam.Google Scholar
  52. Wallach, D. F. H., 1973, The role of the plasma membrane in disease processes, in: Biological Membranes (D. Chapman and D. F. H. Wallach, eds.), Vol. 2, pp. 253–294, Academic Press, New York.Google Scholar
  53. Weiss, L., 1962, Cell movement and cell surfaces: A working hypothesis, J. Theor. Biol. 2:236.CrossRefGoogle Scholar
  54. Weiss, L., 1963, The pH value at the surface oí Bacillus subtilis, J. Gen. Microbiol. 32:331.PubMedGoogle Scholar
  55. Weiss, L., 1965, Studies on cellular adhesion in tissue-culture. VIII. Some effects of antisera on cell detachment, Expt. Cell Res. 37:540.CrossRefGoogle Scholar
  56. Weiss, L., 1967, The Cell Periphery, Metastasis and Other Contact Phenomena, North-Holland Publ. Amsterdam.Google Scholar
  57. Weiss, L., 1968a, Studies on cellular adhesion in tissue culture. IX Electrophoretic mobility and contact phenomena. Expt. Cell Res. 51:609.CrossRefGoogle Scholar
  58. Weiss, L., 1968b, Studies on cellular adhesion in tissue culture. X. An experimental and theoretical approach to interaction forces between cells and glass, Expt. Cell Res. 53:603.CrossRefGoogle Scholar
  59. Weiss, L., 1971a, Biophysical aspects of initial cell interactions, Fed. Proc. 30:1649.Google Scholar
  60. Weiss, L., 1971b, Low-resistance junctions and malignancy, Int. J. Cancer 8:546.Google Scholar
  61. Weiss, L., 1973, Biophysical aspects of metastasis: A personal viewpoint, in: Perspectives inCancer Research and Treatment (G. P. Murphy, ed.), pp. 387–398, Liss, New York.Google Scholar
  62. Weiss, L., 1974, Studies on cellular adhesion in tissue culture. XIV. Postively charged surface groups and the rates of cell adhesion, Expt. Cell Res. 83:311.CrossRefGoogle Scholar
  63. Weiss, L., and Chang, M. K., 1973, Some effects of actinomycin D, cycloheximide and puromycin on cell adhesion, J. Cell Sci. 12:655.PubMedGoogle Scholar
  64. Weiss, L., and Cudney, T., 1969, Some effects of pH and formaldehyde on the cellular electrokinetic surface, Int. f. Cancer 4:776.CrossRefGoogle Scholar
  65. Weiss, L., and Harlos, J. P., 1972, Short-term interactions between cell surfaces, Prog. SurfaceSci. 1:355.CrossRefGoogle Scholar
  66. Weiss, L., and Holyoke, E. D., 1969, Some effects of hypervitaminosis A on metastasis of spontaneous breast cancer in mice, J. Nat. Cancer Inst. 43:1045.PubMedGoogle Scholar
  67. Weiss, L., and Huber, D., 1974, Some effects of antimetabolites on cell detachment, J. CellSci. 15:217.Google Scholar
  68. Weiss, L., and Mayhew, E., 1969, Ribonuclease-susceptible charged groups at the surface of Ehrlich ascites tumor cells, Int. J. Cancer 4:626.PubMedCrossRefGoogle Scholar
  69. Weiss, L., and Subjeck, J., 1974a, The densities of colloidal iron hydroxide particles bound to microvilli and the spaces between them. I. Studies on glutaraldehyde-fixed Ehrlich ascites tumor cells, J. Cell Sci. 14:215.Google Scholar
  70. Weiss, L., and Subjeck, J. R., 1974b, Interactions between the peripheries of Ehrlich ascites tumor cells as indicated by the binding of colloidal iron hydroxide particles, Int. J. Cancer 13:143.CrossRefGoogle Scholar
  71. Weiss, L., and Subjeck, J. R., 1974c, Electrical heterogeneity of the surfaces of Ehrlich ascites tumor cells, Ann. N.Y. Acad. Sci. 238:352.CrossRefGoogle Scholar
  72. Weiss, L., and Zeigel, R., 1971, Cell surface negativity and the binding of positively charged particles, J. Cell. Physiol. 77:179.PubMedCrossRefGoogle Scholar
  73. Weiss, L., and Zeigel, R., 1972, Heterogeneity of anionic sites at the electrokinetic surfaces of fixed Ehrlich ascites tumor cells, J. Theor. Biol. 34:21.PubMedCrossRefGoogle Scholar
  74. Weiss, L., Bello, J., and Cudney, T. L., 1968, Positively charged groups at cell surfaces, Int. J.Cancer 3:795.PubMedCrossRefGoogle Scholar
  75. Weiss, L., Jung, O. S., and Zeigel, R., 1972a, The topography of some anionic sites at the surfaces of fixed Ehrlich ascites tumor cells, Int. J. Cancer 9:48.CrossRefGoogle Scholar
  76. Weiss, L., Zeigel, R., Jung, O. S., and Bross, I. D. J., 1972b, The binding of positively charged particles to glutaraldehyde-fixed human erythrocytes, Expt. Cell Res. 70:57.CrossRefGoogle Scholar
  77. Weiss, L., Nir, S., Harlos, J. P., and Subjeck, J. R., 1975a, Long-distance interactions between Ehrlich ascites tumor cells, J. Theor. Biol. 51:439.CrossRefGoogle Scholar
  78. Weiss, L., Poste, G., MacKearnin, A., and Willett, K., 1975b, Growth of mammalian cells on substrates coated with cellular microexudates. I. Effect on cell growth at low population densities, J. Cell Biol. 64:135.CrossRefGoogle Scholar
  79. Weiss, L., Subjeck, J., and Poste, G., 1976, Some electrical properties of the peripheries of murine 3T3 cells with respect to viral transformation and reversion, Int. J. Cancer 16:914.CrossRefGoogle Scholar
  80. Wilkins, D. J., Ottewill, R. H., and Bangham, A. D., 1962, On the flocculation of sheep leucocytes: II. Stability studies. J. Theor. Biol. 2:176.CrossRefGoogle Scholar
  81. Yaoi, Y., and Kanaseki, T., 1972, Role of microexudate carpet in cell division, Nature (London) 237:283.CrossRefGoogle Scholar
  82. Yee, A. G., 1972, Gap junctions between hepatocytes in regenerating rat liver, J. Cell Biol. 55:249A.Google Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • Leonard Weiss
    • 1
  • James P. Harlos
    • 1
  1. 1.Department of Experimental PathologyRoswell Park Memorial InstituteBuffaloUSA

Personalised recommendations