Radiopharmaceuticals for Cardiovascular Investigations

  • Homer B. Hupf
  • Ronald D. Finn
Part of the Topics in Cardiovascular Disease book series (TCAD)


The importance of imaging the myocardium lies in the possible benefit to the patient in the diagnosis and subsequent treatment of coronary artery disease. The rationale for the use of radionuclides in the evaluation of cardiovascular disease has not changed drastically over the past ten years. In the middle sixties, 88Rb (t1/2 = 18.66 days) was being investigated for myocardial infarct,1 and 131 I (t1/2 = 8.05 days) albumin was being evaluated for heart blood-flow studies.2 Today, 81Ró (t1/2 = 4.7 hr) is being investigated for myocardial infarcts,3–6 and 99mTc (t1/2 = 6.05 hr) albumin is used for blood-flow studies.7–8 The major improvements during the last decade have been the availability of more suitable radionuclides (many of which are cyclotron-produced), improved instrumentation (high-performance Anger cameras capable of isolating selected regions of interest), and the interfacing of computers with the cameras for data analyses. Myocardial scanning is not widely performed at the present time, since no completely satisfactory radiopharmaceutical has been available; however, extensive development work is currently underway, and the results to date are encouraging.


Myocardial Perfusion Acute Myocardial Infarct Myocardial Uptake Mount Sinai Medical Anger Camera 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carr, E. A., Jr., Beirwaltes, W. H. et al.,Myocardial scanning with rubidium-86, J. Nucl. Med. 3:76 (1962).PubMedGoogle Scholar
  2. 2.
    Rejali, A. M., Maclntyre, W. J., et al.,A radioisotope method for visualization of blood pools, Amer. J. Roentgenol. 79:129 (1958).PubMedGoogle Scholar
  3. 3.
    Budinger, T. F., McRae, J., et al.,Myocardial imaging with Rb-81, J. Nucl. Med. 15:480 (1974) (abstract).Google Scholar
  4. 4.
    Harper, P. V., Rich, B., et al.,Imaging studies with s1Rb-81nKr (abstract), J. Nucl. Med. 15:500 (1974).Google Scholar
  5. 5.
    Lamb, J. F., Khentigan, A., et al.,Rubidium-81 in evaluation of regional myocardial perfusion, (abstract) J. Nucl. Med. 15:509 (1974).Google Scholar
  6. 6.
    Martin, N. D., Zaret, B. L., et al.,Rubidium-81, a new agent for myocardial perfusion scans at rest and exercise, and comparison with potassium-43 (abstract), J. Nucl. Med. 15:514 (1974).Google Scholar
  7. 7.
    Alpert, N. M., McKusick, K. A., et al.,Noninvasive nuclear kinecardiography, J. Nucl. Med. 15:1182 (1974).PubMedGoogle Scholar
  8. 8.
    Watson, D. D., Sankey, R. R., et al., Cardiac Evaluation,Continuing Education Lectures, Southeastern Chapter, Society of Nuclear Medicine (November 1974).Google Scholar
  9. 9.
    Strauss, H. W., and Pitt, B., Cardiovascular nuclear medicine, Appl. Radiol. 4:57 (1975).Google Scholar
  10. 10.
    Watson, I. A., and Tilbury, R. S., Cyclotron production of the radionuclides 81Rb, 82“Rb and 127Cs (abstract), J. Nucl. Med. 11: 373 (1970).Google Scholar
  11. 11.
    Hurley, P. J., Cooper, M. C., et al.,43 KC1: A new radiopharmaceutical for imaging the heart, J. Nucl. Med. /2:516 (1971).Google Scholar
  12. 12.
    Skrabal, F., Glass, H. I., et al.,A simplified method for simultaneous electrolyte studies in man utilizing potassium-43, Int. J. Appl. Radiat. Isot. 20:677 (1969).PubMedCrossRefGoogle Scholar
  13. 13.
    Rhodes, B. A., Radiopharmaceuticals, in:Principles for Cardiovascular Nuclear Medicine (H. W. Strauss, et al.. eds.) C. V. Mosley Co., St. Louis (1974).Google Scholar
  14. 16.
    Holman, B. L., Eldh, P., et al.,Evaluation of myocardial perfusion after intracoronary injection of radiopotassium, J. Nucl. Med. /4:274 (1973).Google Scholar
  15. 17.
    Poe, N. D., Eber, L. M. et al.,Evaluation of 43K and 129Cs for myocardial imaging (abstract), J. Nucl. Med. 14:440 (1973).Google Scholar
  16. 18.
    Grant, P. M., Erdal, B. R. et al.,A 82Sr-82Ró isotope generator for use in nuclear medicine, J. Nucl. Med. 16:300 (1975).Google Scholar
  17. 19.
    Yano, Y., and Anger, H. P., Visualization of heart and kidneys in animals with ultrashort-lived 82Rb and the positron scintillation camera, J. Nucl. Med. 9: 412 (1968).Google Scholar
  18. 20.
    Carr, E. A., Gleason, G. et al.,The direct diagnosis of myocardial infarction by photoscanning after administration of cesium-131, Amer. Heart J. 68:627 (1964).CrossRefGoogle Scholar
  19. 21.
    Yano, Y., VanDyke, D., et al.,Myocardial uptake studies with 129Cs and the scintillation camera, J. Nucl. Med. 11:663 (1970).PubMedGoogle Scholar
  20. 22.
    Sodd, V. J., Blue, J. W. et al.,Cyclotron production of 129Cs-a promising radiopharmaceutical, (abstract)J. Nucl. Med. 11:362 (1970).Google Scholar
  21. 23.
    Budinger, T. F., and Yano, Y., Myocardial function evaluated by uptake of Cs-129, (abstract)J. Nucl. Med. 13: 417 (1972).Google Scholar
  22. 24.
    Poe, N. D., Comparative myocardial uptake and clearance characteristics of potassium and cesium, J. Nucl. Med. 13:57 (1972).Google Scholar
  23. 25.
    Chandra, R., Braunstein, P., et al.,134“Cs, A new myocardial imaging agent, J. Nucl. Med. 14:243 (1973).PubMedGoogle Scholar
  24. 26.
    Monaham, W. G., Tilbury, R. S. et al.,Uptake of 13N-labeled ammonia, J. Nucl. Med. 13:274 (1972).Google Scholar
  25. 27.
    Harper, P. V., Lathrop, K. A., et al.,Clinical feasibility of myocardial imaging with “NH3, J. Nucl. Med. 13:278 (1972).PubMedGoogle Scholar
  26. 28.
    Gelbard, A. S., Hara, T., et al.,Recent aspects of cyclotron production of medically useful radionuclides, in: Radiopharmaceuticals and Labelled Compounds,Vol. 1, IAEA, Vienna, 1973.Google Scholar
  27. 29.
    Gelbard, A. S., Clarke, L. P., et al.,Enzymatic synthesis and evaluation of N-13 labeled amino acids as myocardial scanning agents, (abstract) J. Nucl. Med. 15:492 (1974).Google Scholar
  28. 30.
    Kawana, M., Krizek, H. et al.,Use of 199T1 as a potassium analog in scanning, (abstract) J. Nucl. Med. 11:333 (1970).Google Scholar
  29. 31.
    Lebowitz, E., Green, M. W. et al.,Thallium-201 for medical use, I., J. Nucl. Med. 16:151 (1975).PubMedGoogle Scholar
  30. 32.
    Bradley-Moore, P. R., Lebowitz, E. et al.,Thallium-201 for medical use, II: Biologic behavior, J. Nucl. Med. 16:156 (1975).PubMedGoogle Scholar
  31. 33.
    Holman, B. L., Dewanjee, M. K., et al.,Detection and localization of experimental myocardial infarction with 99’Tc-tetracycline, J. Nucl. Med. 14:595 (1973).Google Scholar
  32. 34.
    Bonte, F. J., Parkey, R. W. et al.,Distribution of several agents useful in imaging myocardial infarcts, J. Nucl. Med. 16:132 (1975).PubMedGoogle Scholar
  33. 35.
    Zewiman, F. G., O’Keefe, A., et al.,Selective uptake of Tc-99m chelates and Ga-67 in acutely infarcted myocardium, (abstract) J. Nucl. Med. 15:546 (1974).Google Scholar
  34. 36.
    Rossman, D. J., Siegel, M. D., et al.,Accumulation of Tc-99m-glucoheptonate in acutely infarcted myocardium (abstract), J. Nucl. Med. 15:529 (1974).Google Scholar
  35. 37.
    Bonte, J. F., Graham, K. D. et al.,Preparation of Tc-99m-oleic acid complex for myocardial imaging (abstract), J. Nucl. Med. 14:381 (1973).Google Scholar
  36. 38.
    Poe, N. D., Robinson, G. D. et al.,Myocardial extraction of variously labeled fatty acids and carboxylates (abstract), J. Nucl. Med. 14:440 (1973).Google Scholar
  37. 39.
    Robinson, C. D., Jr., and Lee, A. W., Radioiodinated fatty acids for heart imaging: iodine monochloride addition compared with iodide replacement labeling, J. Nucl. Med. 16:17 (1975).Google Scholar
  38. 40.
    Poe, N. D., Robinson, G. D., et al.,Evaluation of 16 iodo-hexadeconoic acid as an indicator of regional myocardial perfusion (abstract), J. Nucl. Med. 15:524 (1974).Google Scholar
  39. 41.
    Evans, J. R., Gunton, R. W., et al.,Use of radioiodinated fatty acid for photoscans of the heart, Circ. Res. 16:1 (1965).CrossRefGoogle Scholar
  40. 42.
    Gunton, R. W., Evans, J. R., et al.,Demonstration of myocardial infarction by photoscans of the heart in man, Am. J. Cardiol. 16:482 (1965).PubMedCrossRefGoogle Scholar
  41. 43.
    Counsell, R. E., and Ice, R. D., Design of Organ Imaging Radiopharmaceuticals, p. 62, University of Michigan, Ann Arbor, (1973).Google Scholar
  42. 44.
    Schelber, H. R., Ashburn, W. L., et al., Comparative myocardial uptake of intravenously administered radionuclides. J. Nucl. Med. 15: 1092 (1974).Google Scholar
  43. 45.
    Berman, D. S., Sale!, A. F. et al., Non-invasive radioisotopic determination of cardiac output utilizing a single probe and a computer model (abstract), J. Nucl. Med. 15: 478 (1974).Google Scholar
  44. 46.
    Hamilton, G. W., Ritchie, J. L. et al.,Detection of stress induced regional myocardial ischemia in humans by injection of MAA at rest and during contrast induced coronary hyperthermia (abstract), J. Nucl. Med. 15:499 (1974).Google Scholar
  45. 47.
    Peek, N. F., Hegedus, F. et al., Rb-81 for myocardial studies (abstract), J. Nucl. Med. 15: 522 (1974).Google Scholar
  46. 48.
    West, J. B., and Dollery, C. T., Uptake of oxygen-15 labeled CO2 compared with carbon-11 labeled CO2 in the lung, J. Appl. Physiol. 17: 9 (1962).PubMedGoogle Scholar
  47. 49.
    Sankey, R., Watson, D. et al., Left ventricular function and shunt flow by C15O2 inhalation, Radiology (1976).Google Scholar
  48. 50.
    Lederer, C. M., Hollander, J. M., and Perlman, I., Table of Isotopes, Sixth Ed., John Wiley & Sons, New York (1968).Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Homer B. Hupf
    • 1
  • Ronald D. Finn
    • 1
  1. 1.Department of Radiology, Baumritter Institute of Nuclear MedicineMount Sinai Medical CenterMiami BeachUSA

Personalised recommendations