Advertisement

Acute Myocardial Infarct Imaging with 99mTc Stannous Pyrophosphate

  • Robert W. Parkey
  • Frederick J. Bonte
  • Ernest M. Stokely
  • L. Maximilian Buja
  • James T. Willerson
Part of the Topics in Cardiovascular Disease book series (TCAD)

Abstract

A number of radiopharmaceuticals have been shown to concentrate in acutely infarcted myocardium. These include 203Hg-chlormerodrin,1,2 203Hg-mercurifluorescein,3,4 99mTc-tetracycline,5 67Ga,6 99mTc-glucohepatonate,7 and 99mTcphosphates.7,8 The best images to date have been with 99Tc-stannous pyrophosphate (99mTc-PYP). 9–11

Keywords

Acute Myocardial Infarction Experimental Myocardial Infarction Anterior Oblique View Anterior Oblique Projection Cardiac Blood Pool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Carr, E. A., Jr., Beierwaltes, W. H., Patno, M. E., Bartlett, J. D., Jr., and Wegst, A. V., The detection of experimental myocardial infarcts by photoscanning, Amer. Heart J. 64: 650 (1962).PubMedCrossRefGoogle Scholar
  2. 2.
    Gorten, R. J., Hardy, L. B., McCraw, B. H., Stokes, J. R., and Lumb, G. D., The selective uptake of Hg-203 chormerodrin in experimentally produced myocardial infarcts, Amer. Heart J. 72: 71 (1966).PubMedCrossRefGoogle Scholar
  3. 3.
    Malek, P., Vavrejn, B., Ratusky, J., Kronrad, L., and Kolc, J., Detection of myocardial infarction by in vivo scanning, Cardiologia 51: 22 (1967).PubMedCrossRefGoogle Scholar
  4. 4.
    Hubner, P. J. B., Radioisotopic detection of experimental myocardial infarction using mercury derivatives of fluorescein, Cardiovasc. Res. 4: 509 (1970).PubMedCrossRefGoogle Scholar
  5. 5.
    Holma, B. L., Dewanjee, M. K., Idoine, J., Fliegel, C. P., Davis, M. A., Treves, S., and Edlh, P., Detection and localization of experimental myocardial infarction with 99mTc-tetracycline, J. Nucl. Med. 14: 595 (1973).Google Scholar
  6. 6.
    Kramer, R. J., Goldstein, R. E., Hirshfeld, J. W., Roberts, W. C., Johnston, G. S., and Epstein, S. E., Accumulation of gallium-67 in regions of acute myocardial infarction, Amer. J. Cardiol. 33: 861 (1974).PubMedCrossRefGoogle Scholar
  7. 7.
    Bonte, F. J., Parkey, R. W., Graham, K. D., Moore, J. G., and Stokely, E. M., A new method for radionuclide imaging of myocardial infarcts, Radiology 110: 473 (1974).PubMedGoogle Scholar
  8. 8.
    Bonte, F. J., Parkey, R. W., Graham, K. D., and Moore, J. G., Distribution of several agents useful in imaging myocardial infarcts, J. Nucl. Med. 16:132 (1975.)PubMedGoogle Scholar
  9. 9.
    Parkey, R. W., Bonte, F. J., Meyer, S. L., Atkins, J. M., Curry, G. C., Stokely, E. M., and Willerson, J. T., A new method for radionuclide imaging of acute myocardial infarction in humans, Circulation 50: 540 (1974).PubMedCrossRefGoogle Scholar
  10. 10.
    Wilkerson, J. T., Parkey, R. W., Bonte, F. J., Meyer, S. L., and Stokely, E. M., Acute subendocardial myocardial infarction in patients: Its detection by technetium-99m stannous pyrophosphate, Circulation 51: 436 (1975).CrossRefGoogle Scholar
  11. 11.
    Willerson, J. T., Parkey, R. W., Bonte, F. J., Meyer, S. L., Atkins, J. M., and Stokely, E. M., Technetium stannous pyrophosphate myocardial scintigrams in patients with chest pain of varying etiology, Circulation 51: 1046 (1975).PubMedCrossRefGoogle Scholar
  12. 12.
    D’Agostino, A. W., An electron microscopic study of cardiac necrosis produced by a 9a-fluorocortisol and sodium phosphate, Amer. J. Pathol. 45: 633 (1964).Google Scholar
  13. 13.
    D’Agostino, A. W., and Chiga, M., Mitochondrial mineralization in human myocardium, Amer. J. Clin. Pathol. 53: 820 (1970).Google Scholar
  14. 14.
    Shen, A. C., and Jennings, R. B., Myocardial calcium and magnesium in acute ischemic injury, Amer. J. Pathol. 67: 417 (1972).Google Scholar
  15. 15.
    Shen, A. C., and Jennings, R. B., Kinetics of calcium accumulation in acute myocardial ischemic injury, Amer. J. Pathol. 67: 441 (1972).Google Scholar
  16. 16.
    Buja, L. M., Parkey, R. W., Dees, J. H., Stokely, E. M., Harris, R. A., Bonte, F. J., and Willerson, J. T., Morphological correlates of 99mtechnetium stannous pyrophosphate imaging of acute myocardial infarcts in dogs, Circulation 52: 596 (1975).PubMedCrossRefGoogle Scholar
  17. 17.
    Stokely, E. M., Parkey, R. W., Lewis, S. E., Buja, L. M., Bonte, F. J., and Willerson, J. T., Computer processing of 99mTc-phosphate myocardial scintigrams, in: Proceedings of IV International Conference on Information Processing Scintigraphy, Paris (1975).Google Scholar
  18. 18.
    Shames, D. M., Botvinick, E., Lappin, H., Townsend, R., Tybery, J., and Parmley, W., Acute Myocardial Infarct Imaging with 89m1’c Stannous Pyrophosphate 143 Quantitation of myocardial infarct size with Tc-99m pyrophosphate and correlation between myocardial CPK depletion and radionuclide uptake, J. Nucl. Med. 16: 569 (1975).Google Scholar
  19. 19.
    Stokely, E. M., Buja, L. M., Lewis, S. E., Parkey, R. W., Bonte, F. J., Harris, R. A., Jr., and Willerson, J. T., Sizing of acute myocardial infarcts in dogs with technetium-99m stannous pyrophosphate myocardial scintigrams, J. Nucl. Med. 71: 1 (1975).Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Robert W. Parkey
    • 1
  • Frederick J. Bonte
    • 1
  • Ernest M. Stokely
    • 1
  • L. Maximilian Buja
    • 2
  • James T. Willerson
    • 3
  1. 1.Department of Radiology, Southwestern Medical SchoolThe University of Texas Health Science CenterDallasUSA
  2. 2.Department of Pathology, Southwestern Medical SchoolThe University of Texas Health Science CenterDallasUSA
  3. 3.Department of Medicine, Southwestern Medical SchoolThe University of Texas Health Science CenterDallasUSA

Personalised recommendations