Three Methods for Determining Pareto-Optimal Solutions of Multiple-Objective Problems

  • Jiguan G. Lin

Abstract

Typical problems in system design, decision making, decentralized control, etc., and most multi-person games bear the following general formulation of multiple-objective (MO) optimization problems:
$${\text{maximize }}{{\text{z}}_{\text{1}}} = {{\text{J}}_{\text{1}}}\left( {{{\text{x}}_1}, \ldots ,{{\text{x}}_{\text{n}}}} \right), \ldots ,\,\,{\text{and}}\,{{\text{z}}_{\text{N}}} = {{\text{J}}_{\text{N}}}\left( {{{\text{x}}_{\text{1}}}, \ldots ,{{\text{x}}_{\text{n}}}} \right)\,{\text{subject to }}\left( {{{\text{x}}_1}, \ldots ,{{\text{x}}_{\text{n}}}} \right) \in {\text{X}}{\text{.}}$$
(1)

Keywords

Retained 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. A. Zadeh, “Optimality and Non-Scalar-Valued Performance Criteria,” IEEE Trans, Automat. Contr., vol. AC-8, pp. 59–60, Jan. 1963.CrossRefGoogle Scholar
  2. [2]
    J. Von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, 3rd ed. Princeton: Princeton Univ. Press, 1953.Google Scholar
  3. [3]
    Y.C. Ho, “Differential Games, Dynamic Optimization, and Generalized Control Theory,” J. Optimiz. Theory Appl. vol. 6, no. 3, pp. 179–209, 1970.Google Scholar
  4. [4]
    J. G. Lin, “On N-Person Cooperative Differential Games,” Proc. 6th Princeton Conf. Inform. Sci. Amp; Syst., Princeton, N.J., pp. 502–507, Mar. 1972.Google Scholar
  5. [5]
    T. C. Koopmans, “Analysis of Production as an Efficient Combination of Activities,” Activity Analysis of Production and Allocation, T. C. Koopmans, Ed. New York: Wiley, pp. 33–97, 1951.Google Scholar
  6. [6]
    K.J. Arrow, E. W. Barankin, and D. Blackwell, “Admissible Points of Convex Sets,” Contributions to the Theory of Games, vol.II, H. W. Kuhn and A. W. Tucker, Eds. Princeton: Princeton Univ. Press, pp. 87–91, 1953.Google Scholar
  7. [7]
    N.O. Da Cuncha and E. Polak, “Constrained Minimization under Vector-Valued Criteria in Finite Dimensional Spaces,” J. Math. Anal. and Appl. vol.19, no.1, pp.103–124, July 1967.Google Scholar
  8. [8]
    J. G. Lin, “Multiple-Objective Optimization,” Columbia Univ., Dept. of Elect. Eng. & Comp. Sci., Syst. Res. Gr. Tech. Rept, Dec. 1972.Google Scholar
  9. [9]
    G. A. Katopis and J. G. Lin, “Non-Inferiority of Controls under Double Performance Objectives: Minimal Time and Minimal Energy,” Proc. 7th Hawaii Int. Conf. Syst. Sci., Honolulu, Hawaii, pp. 129–131, Jan. 1974.Google Scholar
  10. [10]
    J. G. Lin, “Circuit Design under Multiple Performance Objectives,” Proc. 1974 IEEE Int. Symp. Circuits & Systems, San Francisco, Calif., pp. 549–552, Apr. 1974.Google Scholar
  11. [11]
    J.G. Lin, “Maximal Vectors and Multi-Objective Optimization,” J. Optimiz. Theory Appl., vol.18, no.1, pp.41–64, Jan. 1976.Google Scholar
  12. [12]
    J.G. Lin, “Proper Equality Constraints (PEC) and Maximization of Index Vectors,” J. Optimiz. Theory Appl. vol.20, no.4, Dec.1976.Google Scholar
  13. [13]
    J.G. Lin, “Proper Inequality Constraints (PIC) and Maximization of Index Vectors” to appear in J. Optimiz. Theory Appl..Google Scholar
  14. [14]
    J.G. Lin, “Multiple-Objective Problems: Pareto-Optimal Solutions by Method of Proper Equality Constraints (PEC),” to appear in IEEE Trans. Automatic Control.Google Scholar
  15. [15]
    J. G. Lin, “Multiple-Objective Programming: Lagrange Multipliers and Method of Proper Equality Constraints,” to be presented in 1976 Joint Automatic Control Conf., July 1976.Google Scholar
  16. [16]
    P.L. Yu, “Cone Convexity, Cone Extreme Points, and Nondominated Solutions in Decision Problems with Multi-objectives,” J. Optimiz. Theory Appl. vol.14, no.3, pp.319–377, Sept. 1974.Google Scholar
  17. [17]
    H. Payne, E. Polak, D. C. Collins, and W.S. Meisel, “An Algorithm for Bicriteria Optimization Based on the Sensitivity Function.” IEEE Trans. Automat. Contr. vol. AC-20, no. 4, pp. 546–548, Aug. 1975.CrossRefGoogle Scholar
  18. [18]
    J. M. Holtzman and H. Halkin, “Directional Convexity and the Maximum Principle for Discrete Systems,” J. SIAM Contr., vol.4, no. Z, pp. Z63–Z75, 1966.Google Scholar
  19. [19]
    D. M. Himmelblau, Applied Nonlinear Programming, New York: McGraw-Hill, 1972.Google Scholar
  20. [20]
    A. E. Bryson and Y. C. Ho, Applied Optimal Control, Waltham, Mass.: Blaisdell, 1969.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Jiguan G. Lin
    • 1
  1. 1.Department of Electrical Engineering & Comp. Sci.Columbia UniversityNew YorkUSA

Personalised recommendations