Interaction of Low Density Lipoproteins with Small and Large Molecules

  • Santibrata Ghosh


The metabolic fate and the biological functions of a molecule depend primarily on the interactions it may undergo in the physiological milieu. The plasma concentration of LDL, for example, will depend on its interactions with lipolytic and other enzymes as well as with certain cells. In the plasma compartment, LDL may have a role in carrying certain metal ions, free fatty acids, drugs, and other substances. Within arterial tissue, interaction with connective tissue components may be the initial reaction in atherogenesis. Studies on the interaction of LDL with agents as mentioned above are thus directly relevant to the understanding of the biological role of LDL.


Free Fatty Acid Ionic Strength Hyaluronic Acid Electrophoretic Mobility Titration Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. G. Cornwell and F. A. Kruger. 1961. Molecular complexes in the isolation and characterization of plasma lipoproteins. J. Lipid Res. 2:110–134.PubMedGoogle Scholar
  2. 2.
    M. Burstein and H. R. Scholnick. 1973. Lipoprotein-polyanion-metal interactions. In: Advances in Lipid Research. Ed. by R. Paoletti and D. Kritchevsky. Academic Press, New York, pp. 67–108.Google Scholar
  3. 3.
    S. Ghosh, M. K. Basu, and J. S. Schweppe. 1973. Charge heterogeneity of human low density lipoprotein (LDL). Proc. Soc. Exp. Bwl. Med. 142:1322–1325.Google Scholar
  4. 4.
    G. L. Mills and C. E. Taylaur. 1974. Characterization of low density lipoproteins from patients homozygous for familial hyperbetalipoprotenaemia. In: Atherosclerosis III. Ed. by G. Schettler and A. Weizel. Springer-Verlag, New York, pp. 679–681.CrossRefGoogle Scholar
  5. 5.
    D. M. Lee. 1974. Quantitation of apolipoproteins in VLDL and LDL subfractions of normal and hyperlipoproteinemic (type II-A) subjects. In: Atherosclerosis III. Ed. by G. Schettler and A. Weizel. Springer-Verlag, New York, p. 875.Google Scholar
  6. 6.
    J. L. Oncley, F. R. N. Gurd, and M. Melin. 1950. Preparation and properties of serum and plasma proteins. XXV. Composition and properties of human serum β-lipoprotein. J. Am. Chem. Soc. 72:458–464.CrossRefGoogle Scholar
  7. 7.
    S. Margolis. 1969. Structure of very low and low density lipoproteins. In: Structural and Functional Aspects of Lipoproteins in Living Systems. Ed. by E. Tria and A. Scanu. Academic Press, New York, pp. 369–424.Google Scholar
  8. 8.
    S. Ghosh, M. K. Basu, and J. S. Schweppe. 1972. Agarose gel electrophoresis of serum lipoproteins: Determination of true mobility, isoelectric point, and molecular size. Anal. Biochem. 50:592–601.PubMedCrossRefGoogle Scholar
  9. 9.
    K. Aoki and J. F. Foster. 1957. Electrophoretic behavior of bovine plasma albumin at low pH. J. Am. Chem. Soc. 79:3385–3393.CrossRefGoogle Scholar
  10. 10.
    H. G. Bungenberg de Jong. 1949. Reversal of charge phenomena, equivalent weight and specific properties of the ionic groups. In: Colloid Science II. Ed. by H. R. Kruyt. Elsevier, New York, pp. 259–334.Google Scholar
  11. 11.
    D. M. Michaelson, A. F. Horwitz, and M. P. Klein. 1973. Transbilayer asymmetry and surface homogeneity of mixed phospholipids in cosonicated vesicles. Biochemistry 12:2637–2645.PubMedCrossRefGoogle Scholar
  12. 12.
    T. O. Henderson, A. W. Kruski, L. G. Davis, T. Glonek, and A. M. Scanu. 1975. 31P Nuclear magnetic resonance studies on serum low and high density lipoproteins: Effect of paramagnetic ion. Biochemistry 14:1915–1920.PubMedCrossRefGoogle Scholar
  13. 13.
    G. Assmann, E. A. Sokolski, and H. B. Brewer, Jr. 1974. 31P Nuclear magnetic resonance spectroscopy of native and recombined lipoproteins. Proc. Natl. Acad. Sci. U.S.A. 71:549–553.PubMedCrossRefGoogle Scholar
  14. 14.
    E. Shafrir. 1958. Partition of unesterified fatty acids in normal and nephrotic syndrome serum and its effect on serum electrophoretic pattern. J. Clin. Invest. 37:1775–1782.PubMedCrossRefGoogle Scholar
  15. 15.
    R. S. Gordon, Jr. 1955. Interaction between oleate and the lipoproteins of human serum. J. Clin. Invest. 34:477–484.PubMedCrossRefGoogle Scholar
  16. 16.
    D. S. Goodman and E. Shafrir. 1958. The interaction of human serum low density lipoproteins with long-chain fatty acid. J. Am. Chem. Soc. 81:364–370.CrossRefGoogle Scholar
  17. 17.
    D. S. Goodman. 1958. The interaction of human serum albumin with long-chain fatty acid anions. J. Am. Chem. Soc. 80:3892–3898.CrossRefGoogle Scholar
  18. 18.
    A. A. Spector, J. E. Fletcher, and J. D. Ashbrook. 1971. Analysis of long-chain free fatty acid binding to bovine serum albumin by determination of stepwise equilibrum constants. Biochemistry 10:3229–3232.PubMedCrossRefGoogle Scholar
  19. 19.
    C. Tanford. 1972. Hydrophobie free energy, micelle formation and the association of proteins with amphiphiles. J. Mol. Biol. 67:59–74.PubMedCrossRefGoogle Scholar
  20. 20.
    A. A. Spector and J. M. Soboroff. 1972. Comparative effects of MK-185 and clofibrate on free fatty acid utilization in mammalian cell suspension. Circulation 45/46 (Suppl. II):277.Google Scholar
  21. 21.
    A. A. Spector and J. M. Soboroff. 1970. Utilization of free fatty acids bound to plasma lipoproteins by mammalian cells. Circulation 41/42(Suppl. III):3.Google Scholar
  22. 22.
    J. H. Baxter. 1962. Hyperlipoproteinemia in nephrosis. Arch. Intern. Med. 109:146–161.CrossRefGoogle Scholar
  23. 23.
    M. Ayrault-Jarrier. 1961. Action des detergents sur une β-lipoproteine lumaine isoleé: etude de l’extractibilité des lipids. Bull. Soc. Biol. 43:153–165.Google Scholar
  24. 24.
    A. D. Keith, R. J. Mehlhorn, N. K. Freeman, and A. V. Nichols. 1973. Spin labeled lipid probes in serum lipoproteins. Chem. Phys. Lipids 10:223–236.PubMedCrossRefGoogle Scholar
  25. 25.
    J. D. Morrisett, R. Segura, O. D. Taunton, H. J. Pownall, R. L. Jackson, and A. M. Gotto. 1975. Effect of diet on the physical properties and chemical composition of human plasma lipoproteins. Biophys. J. 15:217a.Google Scholar
  26. 26.
    R. A. Muesing and T. Nishida. 1971. Disruption of low and high density human plasma lipoproteins and phospholipid dispersions by l-anilinonaphthalene-8-sulfonate. Biochemistry 10:2952–2962.PubMedCrossRefGoogle Scholar
  27. 27.
    S. Ghosh, M. K. Basu, and J. S. Schweppe. 1974. Interaction of l-anilino-8-naphthalene sultonate with human serum low-density lipoprotein. Biochim. Biophys. Acta 337:395–403.PubMedGoogle Scholar
  28. 28.
    J. N. Finkelstein and S. Ghosh. 1974. Interaction of l-anilinonaphthalene-8-sulfonate with low density lipoprotein: Effect of temperature. Fed. Proc. 33:1586.Google Scholar
  29. 29.
    T. Forster. 1959. Transfer mechanisms of electronic excitation. Disc. Faraday Soc. 27:7–17.CrossRefGoogle Scholar
  30. 30.
    G. Weber, and E. Daniel. 1966. Cooperative effects in binding by bovine serum albumin. II. The binding of l-anilino-8-naphthalene sulfonate. Polarization of the ligand fluorescence and quenching of the protein fluorescence. Biochemistry 5:1900–1907.PubMedCrossRefGoogle Scholar
  31. 31.
    B. Gomperts, F. Lantelme, and R. Stock. 1970. Ion association reactions with biological membranes studied with the fluorescent dye, l-anilino-8-naphthalene-sulfonate. J. Membr. Biol. 3:241–265.CrossRefGoogle Scholar
  32. 32.
    G. Eisenman. 1962. The elementary atomic origin of equilibrium ionic specificity. In: Symposium on Membrane Transport and Metabolism. Ed. by A. Kleinzeller and A. Kotyk. Academic Press, New York, pp. 163–179.Google Scholar
  33. 33.
    R. Eisenstein, S. E. Larsson, K. E. Kuettner, N. Sorgente, and V. C. Hascall. 1975. The ground substance of the arterial wall. Part I. Extractability of glycosaminoglycan and the isolation of a proteoglycan from bovine aorta. Atherosclerosis 21:1–17.CrossRefGoogle Scholar
  34. 34.
    A. Gardais, J. Picard, and B. Hermelin. 1973. Glycosaminoglycan (GAG) distribution in aortic wall from five species. Comp. Biochem. Physiol. 44B:507–515.Google Scholar
  35. 35.
    R. N. Mullinger and G. Manley. 1969. Glycosaminoglycans and atherosclerosis in animal aortas. J. Atheroscler. Res. 9:108–111.PubMedCrossRefGoogle Scholar
  36. 36.
    G. Manley and J. Hawksworth. 1965. Distribution of mucopolysaccharides in the human vascular tree. Nature 206:1152–1153.PubMedCrossRefGoogle Scholar
  37. 37.
    E. B. Smith. 1965. The influence of age and atherosclerosis on the chemistry of aortic intima. Part 2. Collagen and mucopolysaccharides. J. Atheroscler. Res. 5:241–248.PubMedCrossRefGoogle Scholar
  38. 38.
    K. J. Ho, S. T. Fu, C. B. Taylor, and P. Manalo-Estrella. 1972. Cholesterol and acid mucopolysaccharides in hypercholesteremic rabbits. Arch. Pathol. 94:466–470.PubMedGoogle Scholar
  39. 39.
    G. M. Fischer and J. G. Llaurado. 1966. Collagen and elastin content in canine arteries selected from functionally different vascular beds. Circ. Res. 19:394–399.PubMedGoogle Scholar
  40. 40.
    M. Rojkind. 1973. Molecular structure of the fibrous components of the connective tissue. In: Molecular Pathology of Connective Tissues. Ed. by R. Perez-Tamayo and M. Rojkind. Marcel Dekker, New York, pp. 2–104.Google Scholar
  41. 41.
    E. Chung and E. J. Miller. 1974. Collagen polymorphism: Characterization of molecules with the chain composition [αI-III)] in human tissues. Science 183:1200–1201.PubMedCrossRefGoogle Scholar
  42. 42.
    F. S. Steven. 1974. Maturation of collagen fibrils. Scand. J. Clin. Lab. Invest. 34(Suppl. 141):36–38.Google Scholar
  43. 43.
    S. A. Feldman and S. Glagov. 1971. Transmedial collagen and elastin gradients in human aortas: Reversal with age. Atherosclerosis 13:385–394.PubMedCrossRefGoogle Scholar
  44. 44.
    R. H. Cox, A. W. Jones, and G. M. Fischer. 1974. Carotid artery mechanics, connective tissue, and electrolyte changes in puppies. Am. J. Physiol. 223:563–568.Google Scholar
  45. 45.
    R. E. Newman and M. A. Logan. 1950. The determination of collagen and elastin in tissues. J. Biol Chem. 186:549–556.Google Scholar
  46. 46.
    L. B. Sandberg, N. Weissman, and D. W. Smith. 1969. The purification and partial characterization of a soluble elastin-like protein from copper-deficient porcine aorta. Biochemistry 8:2940–2945.PubMedCrossRefGoogle Scholar
  47. 47.
    L. Gotte, M. G. Giro, D. Volpin, and R. W. Home. 1974. The ultrastructural organization of elastin. J. Ultrastruct. Res. 46:23–33.PubMedCrossRefGoogle Scholar
  48. 48.
    J. A. Foster, E. Bruenger, W. R. Gray, and L. B. Sandberg. 1973. Isolation and amino acid sequences of tropoelastin. J. Biol. Chem. 248:2876–2879.PubMedGoogle Scholar
  49. 49.
    D. W. Urry. 1971. Neutral sites for calcium ion binding to elastin and collagen: A charge neutralization theory for calcification and its relationship to atherosclerosis. Proc. Natl. Acad. Sci. U.S.A. 68:810–814.PubMedCrossRefGoogle Scholar
  50. 50.
    B. A. Cox, B. C. Starcher, and D. W. Urry. 1974. Coacervation of tropoelastin results in fiber formation. J. Biol. Chem. 249:997–998.PubMedGoogle Scholar
  51. 51.
    D. W. Urry. 1974. On the molecular basis for vascular calcification. Persp. Biol. Med. 18:68–82.Google Scholar
  52. 52.
    A. Gottschalk. 1972. Definition of glycoproteins and their delineation from other carbohydrate protein complexes. In: Glycoproteins, Their Composition, Structure and Function. Part A. Ed. by A. Gottschalk. BBA Library Vol. 5, Elsevier, Amsterdam, pp. 24–30.Google Scholar
  53. 53.
    B. Radhakrishnamurthy, A. F. Fishkin, G. J. Hubbell, and G. S. Berenson. 1964. Further studies of glycoproteins from a cardiovascular connective tissue. Arch. Biochem. Biophys. 104:19–26.PubMedCrossRefGoogle Scholar
  54. 54.
    G. S. Berenson, B. Radhakrishnamurthy, A. F. Fishkin, H. Dessauer, and P. Arquemborg. 1966. Individuality of glycoproteins in human aorta. J. Atheroscler. Res. 6:214–223.PubMedCrossRefGoogle Scholar
  55. 55.
    V. Maier and E. Buddecke. 1971. Chemical composition and biosynthesis of ox aorta glycoprotein B. Z. Physiol. Chem. 352:1338–1346.CrossRefGoogle Scholar
  56. 56.
    L. Robert, A. Kadar, and B. Robert. 1974. The macromolecules of the intercellular matrix of the arterial wall: collagen, elastin, proteoglycans, and glycoproteins. In: Arterial Mesenchyme and Arteriosclerosis. Ed. by W. D. Wagner and T. B. Clarkson. Plenum Press, New York, pp. 85–121.Google Scholar
  57. 57.
    J. C. Gan, P. V. Narashimhamurthy, C. W. Nichols, Jr., and I. L. Chaikoff. 1967. Mucosubstances in the chicken aorta. Part I. Change with age in acid mucopolysaccharides, glycoproteins, collagen, and elastin. J. Atheroscler. Res. 7:629–645.PubMedCrossRefGoogle Scholar
  58. 58.
    J. S. Amenta and L. L. Waters 1960. Serum lipoprotein precipitation by mucopolysaccharides. Yale J. Biol. Med. 33:112–121.PubMedGoogle Scholar
  59. 59.
    M. Dyrbye and J. C. Kirk. 1957. Mucopolysaccharides of human arterial tissue. I. Isolation of mucopolysaccharide material. J. Gerontol. 12:20–22.PubMedGoogle Scholar
  60. 60.
    A. J. Anderson. 1963. The formation of chondromucoprotein fibrinogen and chondromueoprotein-β-lipoprotein complexes. Biochem. J. 88:460–469.PubMedGoogle Scholar
  61. 61.
    S. Gero, J. Gergely, T. Devenyi, L. Jakob, J. Szekely, and S. Virag. 1961. Role of intimai mucoid substances in the pathogenesis of atherosclerosis. I. Complex formation in vitro between mucopolysaccharides from atherosclerotic aortic intimas and plasma β-lipoprotein and fibrinogen. J. Atheroscler. Res. 1:67–74.PubMedCrossRefGoogle Scholar
  62. 62.
    M. Bihari-Varga, J. Gergely, and S. Gerö. 1964. Further investigations on complex formation in vitro between aortic mucopolysaccharides and β-lipoproteins. J. Atheroscler. Res. 4:106–109.PubMedCrossRefGoogle Scholar
  63. 63.
    M. Bihari-Varga and M. Vegh. 1967. Quantitative studies on the complexes formed between aortic mucopolysaccharides and serum lipoproteins. Biochim. Biophys. Acta 144:202–210.PubMedGoogle Scholar
  64. 64.
    M. Bihari-Varga, J. Simon, and S. Gerö. 1968. Identification of glycosaminoglycan lipoprotein complexes in atherosclerotic aorta intima by thermoanalytical methods. Acta Biochim. Biophys. Acad. Sci. Hung. 3:365–377.Google Scholar
  65. 65.
    S. R. Srinivasan, A. Lopez, B. Radhakrishnamurthy, and G. S. Berenson. 1970. Complexing of serum pre-β-and β-lipoproteins and acid mucopolysaccharides. Atherosclerosis 12:321–334.PubMedCrossRefGoogle Scholar
  66. 66.
    M. Burstein and J. Samaille. 1955. The clarification of lipemic serum by heparin in vitro. Compt. Rend. 241:664–665.Google Scholar
  67. 67.
    M. Burstein and R. Morfin. 1969. Effect of heparin and protamine on the electrophoretic mobility of the serum lipoproteins. Nouv. Rev. Fr. Hematol. 9:365–374.PubMedGoogle Scholar
  68. 68.
    M. Burstein, H. R. Scholnick, and R. Morfin. 1970. Rapid methods for the isolation of lipoproteins from human serum by precipitation with polyanions. J. Lipid Res. 11:583–595.PubMedGoogle Scholar
  69. 69.
    M. Burstein and H. R. Scholnick. 1970. Isolement d’anticops de lapin contre les protéines du serum humain a partir du précipité spécifique après adsorption des antigènes par le sulfate de baryum a pH acide. Nouv. Rev. Fr. Hematol. 10:181–199.PubMedGoogle Scholar
  70. 70.
    E. Shore and R. V. Moore. 1959. A new precipitation method for estimating serum beta lipoproteins. J. Lab. Clin. Med. 53:272–281.Google Scholar
  71. 71.
    M. Burstein and H. R. Scholnick. 1974. Precipitation of serum lipoproteins by heparin. Nouv. Rev. Fr. Hematol. 14:131–136.Google Scholar
  72. 72.
    B. Shore and V. Shore. 1959. Electrophoretic mobilities of high density lipoproteins of human serum. Biochem. Biophys. Res. Commun. 1:228–231.CrossRefGoogle Scholar
  73. 73.
    E. Boyle and R. V. Moore. 1959. A new precipitation method for estimating serum beta lipoproteins. J. Lab. Clin. Med. 53:272–281.PubMedGoogle Scholar
  74. 74.
    S. Mookerjea. 1973. Phosphorylcholine: A specific promoter of heparin and serum β-lipoprotein interaction. Biochem. Biophys. Res. Commun. 53:580–587.PubMedCrossRefGoogle Scholar
  75. 75.
    J. L. Oncley, K. W. Walton, and D. G. Cornwell. 1955. The isolation of human serum β-lipoprotein with dextran sulfate. Abstracts 128th. Meeting Am. Chem. Soc. p. 41c.Google Scholar
  76. 76.
    J. Canal and M. L. Girard. 1968. Mechanism of the fixation of sulfated polysac-charides on lipoproteins: Role of phospholipids. Bull. Soc. Chim. Biol. 50:1523–1536.PubMedGoogle Scholar
  77. 77.
    M. Janado and T. Nishida. 1965. Interaction of dextran sulfate with low density lipoproteins of plasma. J. Lipid Res. 6:331–334.PubMedGoogle Scholar
  78. 78.
    T. Nishida. 1968. Effect of phospholipase A treatment of low density lipoprotein on > the dextran sulfate—lipoprotein interaction. J. Lipid Res. 9:627–635.PubMedGoogle Scholar
  79. 79.
    T. Nishida and U. Cogan. 1970. Nature of the interaction of dextran sulfate with low density lipoproteins of plasma. J. Biol. Chem. 245:4689–4697.PubMedGoogle Scholar
  80. 80.
    P. Bernfeld. 1955. Interaction of plasma proteins with polyelectrolytes. Fed. Proc. 14:182.Google Scholar
  81. 81.
    P. Bernfeld, V. M. Donahue, and M. E. Berkowitz. 1957. Interaction of human serum β-lipoglobulin with polyanion. J. Biol. Chem. 226:51–64.PubMedGoogle Scholar
  82. 82.
    P. Bernfeld, J. S. Nisselbaum, B. J. Berkeley, and R. W. Hanson. 1960. The influence of chemical and physicochemical nature of macromolecular polyanions on their interaction with human serum β-lipoproteins. J. Biol. Chem. 235:2852–2859.Google Scholar
  83. 83.
    C. E. Day. 1970. Low Density Lipoprotein and Polyion Interactions. PhD dissertation, University of Louisville, Kentucky.Google Scholar
  84. 83a.
    C. E. Day and R. S. Levy. 1975. Control of the precipitation reaction between low density lipoproteins and polyanions. Artery 1:150–164.Google Scholar
  85. 84.
    C. E. Day, R. L. Voet, and R. S. Levy. 1970. Elimination of low density lipoproteinpolyanion interaction by amino modifications. FEBS Lett. 7:41–43.PubMedCrossRefGoogle Scholar
  86. 85.
    C. E. Day and J. R. Powell. 1973. Inhibition by nonionic surfactants of the interaction of low-density lipoproteins with sulphated polysaccharides, collagen, elastin, and rabbit aorta in vitro. Int. J. Biochem. 4:117–123.CrossRefGoogle Scholar
  87. 86.
    T. Nikkari and E. Heikkinen. 1968. The lipids of collagen preparations. Acta Chem. Scand. 22:3047–3049.PubMedCrossRefGoogle Scholar
  88. 87.
    C. E. Day. 1974. In: Arterial Mesenchyme and Arteriosclerosis. Ed. by W. D. Wagner and T. B. Clarkson. Plenum Press, New York, pp. 158-159.Google Scholar
  89. 88.
    J. S. Amenta and L. L. Waters. 1960. The precipitation of serum lipoprotein by gelatin. Yale]. Biol. Med. 33:122–127.Google Scholar
  90. 89.
    D. M. Kramsch and W. Hollander. 1973. The interaction of serum and arterial lipoproteins with elastin of the arterial intima and its role in the lipid accumulation in atherosclerotic plaques. J. Clin. Invest. 52:236–247.PubMedCrossRefGoogle Scholar
  91. 90.
    P.-A. Albertsson. 1971. Partition of Cell Particles and Macromolecules. Wiley-Interscience Division, John Wiley and Sons, New York.Google Scholar
  92. 91.
    M. Burstein. 1957. Sur la precipitation des β-lipoproteins et des euglobines du serum par le polvvinvl-Dvrrolidone. Compt. Rend. 244:3189–3194.Google Scholar
  93. 92.
    R. P. Banerjee. 1955. Interaction of macromolecules with plasma proteins. Bull. Calcutta Sch. Trop. Med. 3:21.Google Scholar
  94. 93.
    T. Higuchi and R. Kuramoto. 1954. Study of possible complex formation between macromolecules and certain pharmaceuticals. II. Polyvinylpyrrolidone with p-aminobenzoic acid, aminopyrine, benzoic acid, salicylic acid, p-hydroxybenzoic acid, m-hydroxybenzoic acid, citric acid, and phenobarbital. J. Am. Pharm. Assoc. 43:398–401.Google Scholar
  95. 94.
    S. R. Srinivasan, P. Dolan, B. Radhakrishnamurthy, and G. S. Berenson. 1972. Isolation of lipoiprotein-acid mucopolysaccharide complexes from fatty streaks of human aortas. Atherosclerosis 16:95–104.PubMedCrossRefGoogle Scholar
  96. 95.
    D. M. Kramsch, C. Franzblau, and W. Hollander. 1971. The protein and lipid composition of arterial elastin and its relationship to lipid accumulation in the atherosclerotic plaque. J. Clin. Invest. 50:1666–1677.PubMedCrossRefGoogle Scholar
  97. 96.
    A. I. Lansing, T. B. Rosenthal, M. Alex, and E. W. Dempsey, 1952. The structure and chemical characterization of elastic fibers as revealed by elastase and by electron microscopy. Anat. Rec. 114:555.PubMedCrossRefGoogle Scholar
  98. 97.
    D. M. Kramsch and M. Gottwik. 1972. Isolation of an abnormal lipopeptide from elastin of the human atherosclerotic plaque. Fed. Proc. 31:219.Google Scholar
  99. 98.
    D. M. Kramsch, C. Franzblau, and W. Hollander. 1974. Components of the proteinlipid complex of arterial elastin: their role in the retention of lipid in atherosclerotic lesions. In: Arterial Mesenchyme and Arteriosclerosis. Ed. by W. D. Wagner and T. B. Clarkson, Plenum Press, New York, pp. 193–209.Google Scholar
  100. 99.
    M. Moczar and L. Robert. 1970. Extraction and fractionation of the media of the thoracic aorta: isolation and characterization of structual glycoproteims. Atherosclerosis 11:7–25.PubMedCrossRefGoogle Scholar
  101. 100.
    M. Szigeti, G. Monnier, B. Jacotot, and L. Robert. 1972. Distribution of injected 14C-cholesterol in the macromolecular fractions of rat connective tissues. Connect. Tissue Res. 1:145–152.CrossRefGoogle Scholar
  102. 101.
    B. Jacotot. 1974. Intercellular macromolecules of the arterial wall and plasma lipids. In: Atherosclerosis III. Ed. by G. Schettler and A. Weizel. Springer-Verlag, New York, pp. 207–209.Google Scholar
  103. 102.
    W. D. Comper. 1973. The Biological Function of Proteoglycans. PhD. thesis, Monash University, Australia.Google Scholar
  104. 103.
    T. C. Laurent. 1970. Structure of hyaluronic acid. In: Chemistry and Molecular Biology of the Intercellular Matrix. Vol. 2. Ed. by E. A. Balazs. Academic Press, New York, pp. 703–732.Google Scholar
  105. 104.
    E. D. T. Atkins, T. E. Hardingham, D. H. Isaac, and H. Muir 1974. X-ray fibre diffraction of cartilage proteoglycan aggregates containing hyaluronic acid. Biochem. J. 141:929–921.Google Scholar
  106. 105.
    J. D. Gregory. 1973. Multiple aggregation factors in cartilage proteoglycans. Biochem. J. 133:383–386.PubMedGoogle Scholar
  107. 106.
    B. Radhakrishnamurthy, H. Ruiz, and G. Berenson, 1975. Interactions of glycosaminoglycans with collagen and elastin in bovine aorta. Fed. Proc. 34:635.Google Scholar
  108. 107.
    J. H. Fessier. 1960. A structural function of mucopolysaccharide in connective tissue. Biochem.J. 76:124–132.Google Scholar
  109. 108.
    E. A. Balazs. 1960. Molecular morphology of the vitreous body. In: The Structure of the Eye. Ed. by G. K. Smelser. Academic Press, New York, pp. 293–310.Google Scholar
  110. 109.
    A. G. Ogston and C. F. Phelps. 1961. The partition of solutes between buffer solutions and solutions containing hyaluronic acid. Biochem. J. 78:827–833.PubMedGoogle Scholar
  111. 110.
    A. G. Ogston. 1958. The spaces in a uniform random suspension of fibres. Trans. Faraday Soc. 54:1754–1757.CrossRefGoogle Scholar
  112. 111.
    T. C. Laurent and J. Killander. 1964. A theory of gel filtration and its experimental verification. J. Chromatogr. 14:317–330.CrossRefGoogle Scholar
  113. 112.
    T. C. Laurent. 1964. The interaction between polysaccharides and other macromolecules. 9. The exclusion of molecules from hyaluronic acid gels and solutions. Biochem.J. 93:106–112.PubMedGoogle Scholar
  114. 113.
    T. C. Laurent. 1963. The interaction between polysaccharides and other macromolecules 5. The solubility of proteins in the presence of dextran. Biochem J. 89:253–257.PubMedGoogle Scholar
  115. 114.
    K. Hellsing. 1969. Immune reactions in polysaccharide media. The effect of hyaluronate, chondroitin sulphate and chondroitin sulphate-protein complex on the precipitin reaction. Biochem. J. 112:475–481.PubMedGoogle Scholar
  116. 115.
    W. Hollander and M. Gottwik. 1972. The accumulation of low density lipoproteins (LDL) in the human atherosclerotic plaque. Fed. Proc. 31:219.Google Scholar
  117. 116.
    P.-H. Iverius. 1968. Solubility of low density (β-) lipoproteins in the presence of dextran. Clin. Chim. Acta 20:261–267.PubMedCrossRefGoogle Scholar
  118. 117.
    T. C. Laurent, I. Bjork, A. Pietruszkiewicz, and H. Person. 1963. On the interaction between polysaccharides and other macromolecules. 2. The transport of globular particles through hyaluronic acid solutions. Biochim. Biophys. Acta 78:351–359.PubMedCrossRefGoogle Scholar
  119. 118.
    P.-H. Iverius. 1970. Physical-chemical aspects of lipid deposition in atherosclerosis. In: Chemistry and Molecular Biology of the Intercellular Matrix. Vol. 3. Ed. by E. A. Balazs. Academic Press, New York, pp. 1615–1619.Google Scholar
  120. 119.
    P.-H. Iverius. 1972. The interaction between plasma lipoproteins and connective tissue glycoswaminoglycans. J. Biol. Chem. 247:2607–2613.PubMedGoogle Scholar
  121. 120.
    L. A. Fransson and B. Havsmark. 1970. Structure of dermatan sulphate. VII. The co-polymeric structure of dermatan sulphate from horse aorta. J. Biol. Chem. 245:4770–4783.PubMedGoogle Scholar
  122. 121.
    S. R. Srinivasan, B. Radhakrishnamurthy, and G. S. Berenson, 1974. Further studies on the interaction of heparin with serum lipoproteins. Fed. Proc. 33:1479.Google Scholar
  123. 122.
    S. Ghosh and D. B. Moss. 1974. Electroendosmosis. Correction lor electrophoretic mobility determined in gels. Anal. Biochem. 62:365–370.CrossRefGoogle Scholar
  124. 123.
    S. Ghosh, D. B. Moss, and J. S. Schweppe. 1975. Transport and interaction of proteins in polyanionic gels. Biophys. J. 15:192a.Google Scholar
  125. 124.
    B. Lages and S. S. Stivala. 1973. Interaction of the polyelectrolyte heparin with copper (II) and calcium. Biopolymers 12:127–143.PubMedCrossRefGoogle Scholar
  126. 125.
    S. Ghosh and D. B. Moss. Unpublished observation.Google Scholar
  127. 126.
    R. A. Gelman and J. Blackwell. 1973. Interactions between mucopolysaccharides and cationic polypeptides in aqueous solution: Chondroitin 4 sulphate and dermatan sulfate. Biopolymers 12:1959–1974.PubMedCrossRefGoogle Scholar
  128. 127.
    B. P. Toole and D. A. Lowther. 1965. The organization of hexosamine containing compounds in bovine skin. Biochem. Biophys. Acta 121:315–325.Google Scholar
  129. 128.
    R. S. Levy and C. E. Day. 1970. Low density lipoprotein structure and its relation to atherogeneis. In: Atherosclerosis. Ed. by R. J. Jones. Springer-Verlag, New York, pp. 186–189.Google Scholar
  130. 129.
    L. B. Barnett and H. B. Bull. 1960. Electrophoresis of ribonudease and of β-lactoglobulin: Isolectric points of proteins. Arch. Biochem. Biophys. 89:167–172.PubMedCrossRefGoogle Scholar
  131. 130.
    D. A. Haydon. 1961. The surface charge of cells and some other small particles as indicated by electrophoresis. I. The zeta potential-surface charge relationships. Biochem. Biophys. Acta 50:450–457.CrossRefGoogle Scholar
  132. 131.
    A. Veis. 1970. Phase equilibria in systems of interacting polyelectrolytes. In: Biological Polyelectrolytes. Ed. by A. Veis. Marcel Dekker, New York, pp. 211–273.Google Scholar
  133. 132.
    H. G. Bungenberg de Jong and R. E. Westerkamp. 1931. Zur Kenntnis der. Komplexkoazervation. VI. Mitteilung; Lecithin als Komplexteilnehmer. Biochem. Z. 234:367–400.Google Scholar
  134. 133.
    S. Ghosh. Unpublished observations.Google Scholar
  135. 134.
    I. Gersh and H. R. Catchpole, 1960. The nature of ground substance of connective tissue. Persp. Biol. Med. 3:282–319.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Santibrata Ghosh
    • 1
  1. 1.Department of Biochemistry, Medical and Dental SchoolsNorthwestern UniversityChicagoUSA

Personalised recommendations