Advertisement

Interaction of Low Density Lipoproteins with Arterial Constituents: Its Relationship with Atherogenesis

  • German Camejo

Abstract

Atherogenesis appears to be a sequential response of arterial wall cells to injurious stimuli. For many years it has been postulated that plasma low density lipoprotein (LDL) is one of the factors leading to atheromatous lesions.1 Two types of results have supported this hypothesis: one from the demonstration that LDL and some of its components accumulate in the arterial intima media, and the other from follow-up studies of large groups showing that an augmented cholesterol level in plasma is one of the primary risk factors that defines humans with a higher probability of suffering cardiovascular disturbances related to atherosclerosis.2 Smith and Slater3 have provided data that link the immunological and chemical demonstration of LDL components in the arterial wall with the population studies. These authors demonstrated that the amount of detectable LDL in the intima-media of human arteries correlates very well with the circulating levels of plasma LDL. Recently Smith4 presented a valuable review on this subject.

Keywords

Arterial Wall Cholesteryl Ester Human Aorta Hypercholesterolemic Rabbit Hypercholesterolemic Animal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. D. Haust. 1974. Reaction patterns of intimai mesenchyme to injury and repair in atherosclerosis. Adv. Exp. Med. Biol. 43:35–57.PubMedGoogle Scholar
  2. 2.
    T. Gordon and W. B. Kannel. 1972. Predisposition to atherosclerosis in the head, heart, and legs: The Framingham study. J. Am. Med. Assoc. 221:661–666.CrossRefGoogle Scholar
  3. 3.
    E. B. Smith and R. S. Slater. 1972. Relationship between low density lipoprotein in aortic intima and serum lipid levels. Lancet 1:463–469.PubMedCrossRefGoogle Scholar
  4. 4.
    E. B. Smith. 1974. The relationship between plasma and tissue lipids in human atherosclerosis. Adv. Lipid Res. 12:1–49.PubMedGoogle Scholar
  5. 5.
    D. M. Spain and N. Aristizabal. 1962. Rabbit local tissue response to triglycerides, cholesterol, and its esters. Arch. Pathol. 73:82–85.PubMedGoogle Scholar
  6. 6.
    Y. H. Abdulla, C. W. M. Adams, and R. S. Morgan. 1967. Connective-tissue reactions to implantation of purified sterol, sterol esters, phosphoglycerides, glycerides, and free fatty acids. J. Pathol Bacteriol. 94:63–71.PubMedCrossRefGoogle Scholar
  7. 7.
    R. W. Wissler, R. E. Tracy, Z. Molnar, D. Racker, M. Mancini, and R. Hughes. 1964. Lipoprotein induced model lesions in the aortic media of rhesus monkeys. Fed. Proc. 23:101.Google Scholar
  8. 8.
    D. M. Small and G. G. Shipley. 1974. Physical-chemical basis of lipid deposition in atherosclerosis. Science 185:222–229.PubMedCrossRefGoogle Scholar
  9. 9.
    K. Fisher-Dzoga, R. Chen, and R. W. Wissler. 1974. Effects of serum lipoproteins on the morphology, growth, and metabolism of arterial smooth muscle cells. Adv. Exp. Med. Biol. 43:299–311.PubMedGoogle Scholar
  10. 10.
    K. W. Walton and N. Williamson. 1968. Histological and immunofluorescent studies on the evolution of the human atheromatous plaque. J. Atheroscler. Res. 8:599–624.PubMedCrossRefGoogle Scholar
  11. 11.
    Y. Stein and O. Stein. 1973. Lipid synthesis and degradation and lipoprotein transport in mammalian aorta. In: Atherogenesis: Initiating Factors. Ciba Foundation Symp. No. 12 (New Series). Ed. by R. Porter and J. Knight. Assoc. Scientific Publishers, Amsterdam, pp. 165–183.Google Scholar
  12. 12.
    C. G. Caro, J. M. Fitz-Gerald, and R. C. Schroter. 1971. Atheroma and arterial wall shear. Observation, correlation, and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. R. Soc. London, Ser. B 177:109–159.CrossRefGoogle Scholar
  13. 13.
    C. W. M. Adams. 1972. Lipoproteins and the reversibility of atherosclerosis. Lancet 1:635–636.PubMedCrossRefGoogle Scholar
  14. 14.
    S. Eisenberg, Y. Stein, and O. Stein. 1969. Phospholipases in arterial tissue. III. Phosphatide acyl hydrolase, lysophosphatide acyl hydrolase, and sphingomyelin choline phosphohydrolase in rat and rabbit aorta in different age groups. Biochim. Biophys. Acta 176:557–569.PubMedGoogle Scholar
  15. 15.
    S. Eisenberg, Y. Stein, and O. Stein. 1969. Phospholipases in arterial tissue. IV. The role of phosphatide acyl hydrolase, lysophosphatide acyl hydrolase, and sphingomyelin choline phosphohydrolase in the regulation of phospholipid composition in the normal human aorta with age. J. Clin. Invest. 48:2320–2329.PubMedCrossRefGoogle Scholar
  16. 16.
    S. Hashimoto and S. Dayton. 1974. Choiesterol-esterifying activity of aortas from atherosclerosis-resistant and atherosclerosis-susceptible species. Proc. Soc. Exp. Biol. Med. 145:89–92.PubMedGoogle Scholar
  17. 17.
    D. Kritchevsky, S. A. Tepper, J. C. Genzano, and V. K. Himanshu. 1974. Aortic cholesterol esterase in rabbits. Effect of duration of cholesterol feeding. Atherosclerosis 19:459–462.PubMedCrossRefGoogle Scholar
  18. 18.
    S. Margolis. 1969. Structure of very low and low density lipoproteins. In: Structural and Functional Aspects of Lipoproteins in Living Systems. Ed. by E. Tria and A. M. Scanu. Academic Press, London, pp. 369–424.Google Scholar
  19. 19.
    S. Margolis. 1967. Separation and size determination of human serum lipoproteins by agarose gel filtration. J. Lipid Res. 8:501–507.PubMedGoogle Scholar
  20. 20.
    K. R. Bruckdorfer and C. Green. 1967. The exchange of unesterified cholesterol between human low density lipoproteins and rat erythrocyte “ghosts.” Biochem. J. 104:270–277.PubMedGoogle Scholar
  21. 21.
    L. Robert, B. Robert, and A. M. Robert. 1972. Interactions entre lipides, lipoproteines et macromolecules fibreuses du tissu conjonctif. Expos. Ann. Biochim. Med. 31:110–144.PubMedGoogle Scholar
  22. 22.
    D. M. Kramsch and W. Hollander. 1973. The interaction of serum and arterial lipoproteins with elastin of the arterial intima and its role in the lipid accumulation in atherosclerotic plaques. J. Clin. Invest. 52:236–247.PubMedCrossRefGoogle Scholar
  23. 23.
    D. M. Kramsch, C. Franzblau, and W. Hollander. 1974. Components of the proteinlipid complex of arterial elastin: Their role in the retention of lipid in atherosclerotic lesions. Adv. Exp. Med. Biol. 43:193–210.PubMedGoogle Scholar
  24. 24.
    L. Robert, A. Kadar, and B. Robert. 1974. The macromolecules of the intercellular matrix of the arterial wall: Collagen, elastin, proteoglycans, and glycoproteins. Adv. Exp. Med. Biol. 43:85–123.PubMedGoogle Scholar
  25. 25.
    C. W. M. Adams, O. B. Bayliss, R. W. R. Baker, Y. H. Abdulla, and C. J. Hunter-Craig. 1974. Lipid deposits in aging human arteries, tendons, and fascia. Atherosclerosis 19:429–440.PubMedCrossRefGoogle Scholar
  26. 26.
    M. Faber. 1949. The human aorta. Sulfate-containing polyuronides and the deposition of cholesterol. Arch. Pathol. 48:342–350.Google Scholar
  27. 27.
    H. E. Taylor. 1953. The role of mucopolysaccharides in the pathogenesis of intimai fibrosis and atherosclerosis of the human aorta. Am. J. Pathol. 29:871–883.PubMedGoogle Scholar
  28. 28.
    P. Bernfeld, V. M. Donahue, and M. E. Berkowitz. 1957. Interaction of human serum-β-lipoglobulin with polyanions. J. Biol. Chem. 226:51–64.PubMedGoogle Scholar
  29. 29.
    P. Bernfeld, J. S. Nisselbaum, B. J. Berkeley, and R. W. Hansen. 1960. The influence of chemical and physico-chemical nature of macromolecular polyanions on their interaction with human beta-lipoproteins. J. Biol. Chem. 235:2852–2859.Google Scholar
  30. 30.
    S. Gero, J. Gergely, T. Dévényi, L. Jakab. J. Székely, and S. Virág. 1960. Role of mucoid substances of the aorta in the deposition of lipids. Nature 187:152–153.PubMedCrossRefGoogle Scholar
  31. 31.
    J. S. Amenta and L. L. Waters. 1960. The precipitation of serum lipoproteins by mucopolysaccharides extracted from aortic tissue. Yale J. Biol. Med. 33:112–121.PubMedGoogle Scholar
  32. 32.
    R. W. Jeanloz. 1970. Mucopolysaccharides of higher animals. In: The Carbohydrates. Chemistry and Biochemistry. Volume IIB, 2d ed. Ed. by W. Pigman and D. Horton. Academic Press, New York, pp. 589–625.Google Scholar
  33. 33.
    G. Camejo, V. Bosch, and A. Lopez. 1974. The very low density lipoproteins of cholesterol-fed rabbits. A study of their structure and in vivo changes in plasma. Atherosclerosis 19:139–152.PubMedCrossRefGoogle Scholar
  34. 34.
    C. J. F. Böttcher, F. P. Woodford, and F. B. Klynstra. 1963. On the alleged interaction in vitro between plasma β-lipoproteins and aortic mucopolysaccharides. J. Atheroscler. Res. 3:24–31.PubMedCrossRefGoogle Scholar
  35. 35.
    M. Bihari-Varga and M. Vegh. 1967. Quantitative studies on the complexes formed between aortic mucopolysaccharides and serum lipoproteins. Biochim. Biophys. Acta 144:202–210.PubMedGoogle Scholar
  36. 36.
    A. Gardais, J. Picard, and B. Hermelin. 1973. Glycosaminoglycan (GAG) distribution in aortic wall from five species. Comp. Biochem. Physiol. 44B:507–515.Google Scholar
  37. 37.
    V. Kumar, G. S. Berenson, H. Ruiz, E. R. Dalferes, Jr., and J. P. Strong. 1967. Acid mucopolysaccharides of human aorta. Part 1. Variation with maturation. J. Atheroscler. Res. 7:573–581.PubMedCrossRefGoogle Scholar
  38. 38.
    A. Telner and N. Kalant. 1974. In vitro synthesis of aortic glycosaminoglycans. Effect of diet, lipoproteins, and diabetes. Atherosclerosis 20:81–88.PubMedCrossRefGoogle Scholar
  39. 39.
    P.-H. Iverius. 1972. The interaction between human plasma lipoproteins and connective tissue glycosaminoglycans. J. Biol. Chem. 247:2607–2613.PubMedGoogle Scholar
  40. 40.
    S. R. Srinivasan, P. Dolan, B. Radhakrishnamurthy, and G. S. Berenson. 1972. Isolation of lipoprotein-acid mucopolysaccharide complexes from fatty streaks of human aortas. Atherosclerosis 16:95–104.PubMedCrossRefGoogle Scholar
  41. 41.
    H. Kresse, H. Heidel, and E. Buddecke. 1971. Chemical and metabolic heterogeneity of a bovine aorta chondroitin sulfate-dermatan sulfate proteoglycan. Eur. J. Biochem. 22:557–562.PubMedCrossRefGoogle Scholar
  42. 42.
    R. A. Gelman, J. Blackwell, and M. B. Mathews. 1974. Interactions of an intact proteoglycan and its fragments with basic homopolypeptides in dilute aqueous solution. Biochem. J. 141:445–454.PubMedGoogle Scholar
  43. 43.
    G. Camejo, A. Lopez, H. Vegas, and H. Paoli. 1975. The participation of aortic proteins in the formation of complexes between low density lipoproteins and intima-media extracts. Atherosclerosis 21:77–91.PubMedCrossRefGoogle Scholar
  44. 44.
    W. C. Roberts and L. M. Buja. 1972. The frequency and significance of coronary arterial thrombi and other observations in fatal acute myocardial infarction. Am. J. Med. 52:425–443.PubMedCrossRefGoogle Scholar
  45. 45.
    K. Cramér. 1961. Cholesterol and phospholipid content of human β-lipoprotein in different lipemic states and following myocardial infarction. J. Atheroscler. Res. 1:317–334.PubMedCrossRefGoogle Scholar
  46. 46.
    G. Camejo, V. Bosch, C. Arreaza, and H. C. Mendez. 1973. Early changes in plasma lipoprotein structure and biosynthesis in cholesterol-fed rabbits. J. Lipid Res. 14:61–68.PubMedGoogle Scholar
  47. 47.
    H. Field, Jr., L. Sweet, P. E. Schools, Jr., and C. R. Treadwell. 1960. Dynamic aspects of cholesterol metabolism in different areas of the aorta and other tissues in man and their relationship to atherosclerosis. Circulation 22:547–558.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • German Camejo
    • 1
  1. 1.Laboratorio de Lipoproteínas, Centro de Biofísica y BioquímicaInstituto Venezolano de Investigaciones Científicas (IVIC)CaracasVenezuela

Personalised recommendations