Histochemical Mapping of the Limbic System

  • Leonard W. Hamilton


One of the fundamental principles characterizing all histological procedures is selectivity. Although the ultimate goal in staining of the central nervous system is to provide a description of all the interconnections of the brain, each particular method gains its power from the property of selectively staining only certain aspects of the central nervous system. In some cases, such as the original Golgi method, the stain impregnates the entire cell and its processes, but, for reasons that are not understood, the method affects only about 5% of the total population of cells. If this were not the case, the stain would not have been useful to Golgi because of the limitations in producing thin slices of tissue—thick sections in which all the cells are stained would be nearly opaque, obscuring any cellular detail.


Medial Forebrain Bundle Stria Terminalis Diagonal Band Cholinergic Cell Anterior Olfactory Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cooper, J.R., Bloom, F.E. and Roth, R.H. The Biochemical Basis of Neuropharmacology. New York, Oxford University Press, 1970.Google Scholar
  2. Goodman, L.S., and Gilman, A. The Pharmacological Basis of Therapeutics. New York, Macmillan, 1965.Google Scholar
  3. Hall, Z.W., Hildebrand, J.G., and Kravitz, E.A. (Eds.) Chemistry of Synaptic Transmission. Newton, Mass., Chiron, 1974.Google Scholar
  4. McLennan, H. Synaptic Transmission. Philadelphia, Saunders, 1970.Google Scholar
  5. Rech, R.H., and Moore, K.E. (Eds.) An Introduction of Psychopharmacology. New York, Raven, 1971.Google Scholar
  6. Shepherd, G.M. The Synaptic Organization of the Brain. New York, Oxford University Press, 1974.Google Scholar
  7. Aghajanian, G.K., and Gallagher, D.W. Raphe origin of serotonergic nerves terminating in the cerebral ventricles. Brain Res., 88: 221–231, 1975.PubMedCrossRefGoogle Scholar
  8. Andén, N.E., Dahlström, A., Fuxe, K., Larsson, K., Olson, L., and Ungerstedt, U. Ascending monoamine neurons to the telencephalon and diencephalon. Acta Physiol. Scand., 67: 313–326, 1966.CrossRefGoogle Scholar
  9. Blackstad, T.W., Fuxe, K., and Hökfelt, T. Noradrenaline nerve terminals in the hippocampal region of the rat and the guinea pig. Z. Zellforsch. Mikrosk. Anat., 78: 463–473, 1967.PubMedCrossRefGoogle Scholar
  10. Bloom, F.E. The gains in brain are mainly in the stain. In Worden, F.G., Swazey, J.P., and Adelman, G. The Neurosciences: Paths of Discovery. Cambridge, M.I.T. Press, 1975.Google Scholar
  11. Bobbillier, P., Pettijean, F., Salvert, D., Ligier, M., and Seguin, S. Differential projections of the nucleus raphe dorsalis and nucleus ventralis as revealed by autoradiography. Brain Res., 85: 201–203, 1975.CrossRefGoogle Scholar
  12. Carlsson, A., Falck, B., and Hillarp, N.A. Cellular localization of brain monoamines. Acta Physiol. Scand., Suppl. 196: 6–28, 1962.Google Scholar
  13. Clavier, R.M., and Routtenberg, A. Ascending monoamine-containing fiber pathways related to intracranial self-stimulation: histochemical flourescence study. Brain Res., 72: 25–40, 1974.PubMedCrossRefGoogle Scholar
  14. Dahlström, A., and Fuxe, K. Evidence for the existence of monoamine-containing neurons in the central nervous system. Acta Physiol. Scand., 62: 3–55, 1964.CrossRefGoogle Scholar
  15. Deguchi, T., Sinha, A.K., and Barchas, J.D. Biosynthesis of serotonin in raphe nuclei of rat brain: effect of p-chlorophenylalanine. J. Neurochem., 20: 1329–1336, 1973.PubMedCrossRefGoogle Scholar
  16. Descarries, L., Beaudet, A., and Watkins, K.C. Serotonin nerve terminals in adult rat neocortex. Brain Res., 100:563–588, 1975.PubMedCrossRefGoogle Scholar
  17. Falck, B. Observations on the possibility of the cellular localization of monoamines by a flourescence method. Acta Physiol. Scand., 56: 6–25, 1962.Google Scholar
  18. Fuxe, K., Goldstein, M., Hökfelt, T., Johnsson, G., and Lidbrink, P. Dopaminergic involvement in hypothalamic function: extra-hypothalamic control. A neuroanatomical analysis. Adv. Neurol., 5: 405–419, 1974.PubMedGoogle Scholar
  19. Harvey, J.A., Heller, A., Moore, R.Y., Hunt, H.F., and Roth, L.J. Effect of central nervous system lesions on barbiturate sleeping time in the rat. J. Pharmacol. Exp. Ther., 144: 24, 1964.PubMedGoogle Scholar
  20. Heller, A., and Moore, R.Y. Effect of central nervous system lesions on brain monoamines in the rat. J. Pharmacol. Exp. Ther., 150: 1–9, 1965.PubMedGoogle Scholar
  21. Hökfelt, T., Fuxe, K., Goldstein, M., Johansson, O., and Ljungdahl, A. Recent developments in monoamine histochemistry. J. Psychiat. Res., 11: 277–280, 1974.PubMedCrossRefGoogle Scholar
  22. Koob, G.F., Balcom, G.J., and Meterhoff, J.L. Dopamine and norepinephrine levels in the nucleus accumbens, olfactory tubercle and corpus striatum following lesions in the ventral tegmental area. Brain Res., 94: 4555, 1975.CrossRefGoogle Scholar
  23. Kobayashi, R.M., Palkovits, M., Kopin, I.J., and Jacobowitz, D.M. Biochemical mapping of noradrenergic nerves arising from the rat locus coeruleus. Brain Res., 77: 269–279, 1974.PubMedCrossRefGoogle Scholar
  24. Kuhar, M.J., Simon, J.R., and Taylor, N. Serotonergic synaptosomes from rat hippocampus: lack of acetyl-cholinesterase. Brain Res., 99: 415–418, 1975.PubMedCrossRefGoogle Scholar
  25. Lindvall, O., and Björklund, A. The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid flourescence method. Acta Physiol. Scand., Suppl. 412: 1–48, 1974.Google Scholar
  26. Lorens, S.A., and Guldberg, H.C. Regional 5-hydroxytryptamine following selective midbrain raphe lesions in the rat. Brain Res., 78: 45–56, 1974.PubMedCrossRefGoogle Scholar
  27. Lynch, G., Gall, C., Mensah, P., and Cotman, C.W. Horseradish peroxidase histochemistry: a new method for tracing efferent projections in the central nervous system. Brain Res., 79: 373–380, 1974.CrossRefGoogle Scholar
  28. Lynch, G., Smith, R.L., and Robertson, R. Direct projections from brainstem to telencephalon. Exp. Brain Res., 17: 221–228, 1973.PubMedCrossRefGoogle Scholar
  29. Moore, R.Y. Brain lesions and monoamine metabolism. Int. Rev. Neurobiol., 13: 67–91, 1970.CrossRefGoogle Scholar
  30. Moore, R.Y., and Halaris, A.E. Hippocampal innervation by serotonin neurons of the midbrain raphe in the rat. J. Comp. Neurol., 164: 171–183, 1975.PubMedCrossRefGoogle Scholar
  31. Moore, R.Y., and Heller, A. Monoamine levels and neuronal degeneration in rat brain following lateral hypothalamic lesions. J. Pharmacol. Exp. Ther., 156: 12–22, 1967.PubMedGoogle Scholar
  32. Moore, R.Y., Wong, S.L.R., and Heller, A. Regional effects of hypothalamic lesions on brain serotonin. Archiv. Neurol., 13: 346–354, 1965.CrossRefGoogle Scholar
  33. Morgane, P.J., and Stern, W.C. Chemical anatomy of brain circuits in relation to sleep and wakefulness. In Weitzman, E.D. (Ed.): Advances in Sleep Research, Vol. 1. New York, Spectrum, pp. 1–131, 1974.Google Scholar
  34. Paul, S.M., Heath, R.G., and Ellison, J.P. Histochemical demonstration of a direct pathway from the fastigial nucleus to the septal region. Exp. Neurol., 40: 798–805, 1973.PubMedCrossRefGoogle Scholar
  35. Pickel, V.M., Segal, M., and Bloom, F.E. A radioautographic study of the efferent pathways of the nucleus locus coeruleus. J. Comp. Neurol., 155: 15–42, 1974.PubMedCrossRefGoogle Scholar
  36. Roizen, M.F., and Jacobowitz, D.M. Studies on the origin of innervation of the noradrenergic area bordering on the nucleus raphe dorsalis. Brain Res., 101: 561–568, 1976.PubMedCrossRefGoogle Scholar
  37. Sachs, C., Johnsson, G., and Fuxe, K. Mapping of the central noradrenaline pathways with 6-hydroxy-dopa. Brain Res., 63: 249–261, 1973.PubMedCrossRefGoogle Scholar
  38. Simon, H., Lemoal, M., Galey, D., and Cardo, B. Selective degeneration of central dopaminergic systems after injection of 6-hydroxydopamine in the ventral mesencephalic tegmentum of the rat. Demonstration by the Fink-Heimer stain. Exp. Brain Res., 20: 375–384, 1974.PubMedCrossRefGoogle Scholar
  39. Swanson, L.W., and Hartman, B.K. The central adrenergic system. An immunoflourescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-beta-hydroxylase as a marker. J. Comp. Neurol., 163: 467–505, 1975.PubMedCrossRefGoogle Scholar
  40. Toyama, M., Maeda, T., and Shimizu, N. Detailed noradrenaline pathways of locus coeruleus neurons to the cerebral cortex with use of 6-hydroxydopa. Brain Res., 79: 139–144, 1974.PubMedCrossRefGoogle Scholar
  41. Ungerstedt, U. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol. Scand., Suppl. 367: 1–47, 1971.Google Scholar
  42. Domino, E.F., Dren, A.T., and Yamamoto, K.I. Pharmacologic evidence for cholinergic mechanisms in neocortical and limbic activating systems. In Adey, W.R., and Tokizane, T. (Eds.): Progress in Brain Research, Vol. 27. Amsterdam, Elsevier, pp. 337–363, 1967.Google Scholar
  43. Koelle, G.B. The histochemical localization of cholinesterases in the central nervous system of the rat. J. Comp. Neurol., 100: 211, 1954.PubMedCrossRefGoogle Scholar
  44. Lewis, P.R., and Shute, C.C.D. The cholinergic limbic system: projections to hippocampal formation, medial cortex, nuclei of the ascending cholinergic reticular system and the subfornical organ and supraoptic crest. Brain, 90: 521–539, 1967.PubMedCrossRefGoogle Scholar
  45. Shute, C.C.D. Cholinergic pathways in the brain. In Laitinen, L.V., and Livingston, K.E. (Eds.): Surgical Approaches in Psychiatry, Baltimore, University Park Press, 1973.Google Scholar
  46. Shute, C.C.D., and Lewis, P.R. Cholinesterase-containing systems of the brain of the rat. Nature, 199: 1160–1164, 1963.PubMedCrossRefGoogle Scholar
  47. Shute, C.C.D., and Lewis, P.R. The ascending cholinergic reticular system: neocortical, olfactory and subcortical projections. Brain, 90: 497–521, 1967.PubMedCrossRefGoogle Scholar
  48. Yamamura, H.I., and Snyder, S.H. Postsynaptic localization of muscarinic cholinergic receptor binding in rat hippocampus. Brain Res., 78: 320–326, 1974.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Leonard W. Hamilton
    • 1
  1. 1.Rutgers UniversityNew BrunswickUSA

Personalised recommendations