Advertisement

Some Experimental Observations on the Neuroanatomical Substrates of Learned Adaptive Behaviors

  • Sebastian P. Grossman

Abstract

Adaptation is a concept which has been defined quite differently in a number of scientific disciplines. The neurophysiologist uses the term to describe a response decrement that occurs, purely as a consequence of repeated stimulation of a sensory receptor or nerve fiber. Such a response decrement is, of course, also “adaptive” in the sense that most behavioral scientists use the term, since it prevents excessive use of a system and thus may prevent harmful consequences. However, this is excess meaning so far as the neurophysiologist is concerned. He, in fact, goes to considerable trouble to distinguish adaptation from the response decrement which can be seen in the central nervous system after it has been established that a stimulus does not have “significance” (i.e., does not portend food, shelter, a mate, an enemy, etc.). This process of habituation is, of course, quite closely related to adaptation as the behaviorist uses the term. Continued responses to insignificant stimuli or, conversely, a loss of responses to stimuli that are of potential significance for the survival of the individual or the perpetuation of the species is a generally acceptable if not terribly informative definition of maladaptive behavior.

Keywords

Substantia Nigra Caudate Nucleus Avoidance Behavior Passive Avoidance Medial Forebrain Bundle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albert, M., and Bignami, G. (1968). Effects of frontal median cortical and caudate lesions on two-way avoidance learning by rats. Physiol Behav. 3, 141–147.CrossRefGoogle Scholar
  2. Alheid, G., and Grossman, S. P. (1974). Aphagia and adipsia produced by knife cuts ventral to the globus pallidus. Proc. Soc. Neurosci. 4, 115 (abstract).Google Scholar
  3. Cardo, B. (1960). Action de lésions thalamiques et hypothalamiques sur le conditionnement de fuite et la différenciation tonale chez le rat. j. Physiol (Paris) 52, 537–553.Google Scholar
  4. Chase, P., and Moore, R. Y. (1968). Medial forebrain bundle and dorsomedial tegmentum lesions-effect on operant behavior and activity in the rat. Commun. Behav. Biol., Part A 1, 133–141.Google Scholar
  5. Chorover, S., and Gross, C. (1963). Caudate nucleus lesions: Behavioral effects in the rat. Science 141, 826–827.CrossRefGoogle Scholar
  6. Cooper, B. R., Breese, G. R., Howard, J. L., and Grant, L. D. (1972). Effect of central catecholamine alterations by 6-hydroxy-dopamine on shuttle box avoidance acquisition. Physiol. Behav. 9, 727–731.CrossRefGoogle Scholar
  7. Cooper, R. R., Breese, G. R., Grant, L. D., and Howard, J. L. (1973). Effects of 6-hydroxydopamine treatments on active avoidance responding: Evidence for involvement of brain dopamine. J. Pharmacol Exp. Ther. 185, 358–370.Google Scholar
  8. Coscina, D. V., and Balagura, S. (1970). Avoidance and escape behavior of rats with aphagia produced by basal diencephalic lesions. Physiol Behav. 5, 651–658.CrossRefGoogle Scholar
  9. Deadwyler, S. A., Montgomery, D., and Wyers, E. J. (1972). Passive avoidance and carbachol excitation of the caudate nucleus. Physiol Behav. 8, 631–635.CrossRefGoogle Scholar
  10. Fibiger, H. C., Phillips, A. G., and Zis, A. P. (1974). Deficits in instrumental responding after 6-hydroxydopamine lesions of the nigroneostriatal dopaminergic projection. Pharmacol. Biochem. Behav. 2, 87–96.CrossRefGoogle Scholar
  11. Green, R. H., Beatty, W. W., and Schwartzbaum, J. S. (1967). Comparative effects of septohippocampal and caudate lesions on avoidance behavior in rats. J. Comp. Physiol Psychol. 64, 444–452.CrossRefGoogle Scholar
  12. Grinberg-Zylberbaum, Y., Carranza, M. B., Cepeda, G. V., Vale, T. C., and Steinberg, N. N. (1974). Caudate nucleus stimulation impairs the processes of perceptual integration. Physiol Behav. 12, 913–918.CrossRefGoogle Scholar
  13. Grossman, S. P., and Grossman, L. (1970). Surgical interruption of the anterior or posterior connections of the hypothalamus: Effects on aggressive and avoidance behavior. Physiol Behav. 5, 1313–1317.CrossRefGoogle Scholar
  14. Grossman, S. P., and Peters, R. (1966). Acquisition of appetitive and avoidance habits following atropine-induced blocking of the thalamic reticular formation. J. Comp. Physiol Psychol. 61, 325–332.CrossRefGoogle Scholar
  15. Grossman, S. P., Grossman, L., and Walsh, L. L. (1975). Functional organization of the rat amygdala with respect to avoidance behavior. J. Comp. Physiol Psychol. 88, 829–850.CrossRefGoogle Scholar
  16. Grossman, S. P., Freedman, P., Peters, R., and Willer, H. (1965). Behavioral effects of cholinergic stimulation of the thalamic reticular formation. J. Comp. Physiol. Psychol. 59, 57–65.CrossRefGoogle Scholar
  17. Hall, E. (1972). Some aspects of the structural organization of the amygdala. In B. E. Eleftheriou (Ed.), The Neurobiology of the Amygdala. New York: Plenum Press.Google Scholar
  18. Heller, A., Seiden, L. S., and Moore, R. Y. (1966). Regional effects of lateral hypothalamic lesions on brain norepinephrine in the cat. Int. J. Neuropharmacol. 5, 91–101.CrossRefGoogle Scholar
  19. Herz, M. J., and Peeke, H. V. S. (1971). Impairment of extinction with caudate nucleus stimulation. Brain Res. 33, 519–522.CrossRefGoogle Scholar
  20. Jacobowitz, D. M., and Palkovits, M. (1974). Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain. I. Forebrain (telencephalon, diencephalon). J. Comp. Neurol. 157, 13–28.CrossRefGoogle Scholar
  21. Kent, E. W., and Grossman, S. P. (1973). Elimination of learned behaviors after transection of fibers crossing the lateral border of the hypothalamus. Physiol Behav. 10, 953–963.CrossRefGoogle Scholar
  22. Kent, E. W., Rezak, M., and Grossman, S. P. (1973). Transection and chemical lesion of nigrostriatal pathways: A comparison of effects on learned behavior. Proc. Soc. Neurosci. 3, 410 (abstract).Google Scholar
  23. Kety, S. S. (1972). The possible role of the adrenergic systems of the cortex in learning. In I. J. Kopin (Ed.), Research Publication of the Association for Nervous and Mental Diseases. Baltimore: Williams and Wilkins, pp. 376–389.Google Scholar
  24. Kirkby, R. J., and Kimble, D. P. (1968). Avoidance and escape behavior following striatal lesions in the rat. Exp. Neurol. 20, 215–227.CrossRefGoogle Scholar
  25. Kraly, F. S., and Blass, E. M. (1974). Motivated feeding in the absence of glucoprivic control of feeding in rats. J. Comp. Physiol Psychol. 87, 801–807.CrossRefGoogle Scholar
  26. Lammers, H. J. (1972). The neural connections of the amygdaloid complex in mammals. In B. E. Eleftheriou (Ed.), The Neurobiology of the Amygdala. New York: Plenum Press, pp. 123–144.Google Scholar
  27. Marshall, J. F., Turner, B. H., and Teitelbaum, P. (1971). Sensory neglect produced by lateral hypothalamic damage. Science 174, 523–525.CrossRefGoogle Scholar
  28. Mehler, W. R. (1966). Further notes on the centre median nucleus of Luys. In D. P. Purpura and M. D. Yahr (Eds.), The Thalamus. New York: Columbia University Press, pp. 109–127.Google Scholar
  29. Mikulas, W. L., and Isaacson, R. L. (1965). Impairment and perseveration in delayed tasks due to bilateral lesions of the caudate nucleus in rats. Psychonom. Science 3, 485–486.Google Scholar
  30. Mitcham, J. C., and Thomas, Jr., R. K. (1972). Effects of substantia nigra and caudate nucleus lesions on avoidance learning in rats. J. Comp. Physiol. Psychol. 81, 101–107.CrossRefGoogle Scholar
  31. Morgane, P. J. (1961a). Medial forebrain bundle and “feeding centers” of the hypothalamus. J. Comp. Neurol. 117, 1–25.CrossRefGoogle Scholar
  32. Morgane, P. J. (1961b). Electrophysiological studies of feeding and satiety centers in the rat. Am. J. Physiol. 201, 838–844.Google Scholar
  33. Neill, D., and Grossman, S. P. (1970). Behavioral effects of lesions or cholinergic blockade in the dorsal or ventral caudate. J. Comp. Physiol Psychol. 71, 311–317.CrossRefGoogle Scholar
  34. Neill, D. B., Boggan, W. O., and Grossman, S. P. (1974a). Behavioral effects of amphetamine in rats with lesions in the corpus striatum. J. Comp. Physiol Psychol. 86, 1019–1030.CrossRefGoogle Scholar
  35. Neill, D. B., Boggan, W. O., and Grossman, S. P. (1974b). Impairment of avoidance performance by intrastriatal administration of 6-hydroxy-dopamine. Pharmacol Biochem. Behav. 2, 97–103.CrossRefGoogle Scholar
  36. Olds, M. E., and Hogberg, D. (1964). Subcortical lesions and mass retention in the rat. Exp. Neurol. 10, 296–304.CrossRefGoogle Scholar
  37. Olivier, A., Parent, A., and Poirier, L. J. (1970). Identification of the thalamic nuclei on the basis of their cholinesterase content in the monkey. J. Anat. 106, 37–50.Google Scholar
  38. Palkovits, M., and Jacobowitz, D. M. (1974). Topographic atlas of catecholamine and acetylcholinesterase-containing neurons in the rat brain. II. Hindbrain (mesencephalon, rhombencephalon). J. Comp. Neurol. 157, 29–42.CrossRefGoogle Scholar
  39. Pechtel, C., Masserman, J. H., Schreiner, L., and Levitt, M. (1955). Differential effects of lesions of mediodorsal nuclei of thalamus on normal and neurotic behavior in cats. J. Nerv. Ment. Dis. 121, 26–33.CrossRefGoogle Scholar
  40. Peeke, H. V. S., and Herz, M. J. (1971). Caudate nucleus stimulation retroactively impairs complex maze learning in the rat. Science 173, 80–82.CrossRefGoogle Scholar
  41. Potegal, M. (1969). Role of the caudate nucleus in spatial orientation of rats. J. Comp. Physiol. Psychol. 69, 756–764.CrossRefGoogle Scholar
  42. Ross, J. F., Grossman, L., and Grossman, S. P. (1975). Some behavioral effects of transection of ventral or dorsal fiber connections of the septum. J. Comp. Physiol Psychol. 89, 5–19.CrossRefGoogle Scholar
  43. Routtenberg, A., and Holzman, N. (1973). Memory disruption by electrical stimulation of substantia nigra, pars compacta. Science 181, 83–85.CrossRefGoogle Scholar
  44. Schwartzbaum, J. S., and Donovick, P. J. (1968). Discrimination reversal and spatial alternation associated with septal and caudate dysfunction in rats. J. Comp. Physiol Psychol. 65, 83–92.CrossRefGoogle Scholar
  45. Spiegel, A., Wycis, H. T., Orchinik, C. W., and Freed, H. (1955). The thalamic and temporal orientation. Science 121, 771–772.CrossRefGoogle Scholar
  46. Stein, L. (1968). Chemistry of reward and punishment. In D. H. Efron (Ed.), Psychopharmacology: A Review of Progress, 1957–1967. Washington: U.S. Government Printing Office, 105–123.Google Scholar
  47. Thompson, R. (1969). Socialization of the “visual memory system” in the white rat. J. Comp. Physiol Psychol. (Monograph) 69 (4, Part 2).Google Scholar
  48. Thompson, R. L., and Mettler, F. A. (1963). Permanent learning deficit associated with lesions in the caudate nuclei. Am. J. Ment Defic. 67, 526–535.Google Scholar
  49. Thompson, R., Baumeister, A. A., and Rich, I. (1962). Subcortical mechanisms in a successive brightness discrimination habit in the rat. J. Comp. Physiol. Psychol. 55, 478–481.CrossRefGoogle Scholar
  50. Winocur, G., and Mills, J. A. (1969). Effects of caudate lesions on avoidance behavior in rats. J. Comp. Physiol. Psychol. 68, 552–557.CrossRefGoogle Scholar
  51. Wyers, E. J., and Deadwyler, S. A. (1971). Duration and nature of retrograde amnesia produced by stimulation of caudate nucleus. Physiol. Behav. 6, 97–103.CrossRefGoogle Scholar
  52. Wyers, E. J., Peeke, H. V. S., Williston, J. S., and Herz, M. J. (1968). Retroactive impairment of passive avoidance by stimulation of the caudate nucleus. Exp. Neurol. 22, 350–366.CrossRefGoogle Scholar
  53. Zis, A. P., Fibiger, H. C., and Phillips, A. G. (1974). Reversal by L-dopa of impaired learning due to destruction of the dopaminergic nigro-neostriatal projection. Science 185, 960–962.CrossRefGoogle Scholar
  54. Zornetzer, S. F., and Chronister, R. B. (1973). Neuroanatomical localization of memory disruption: relationship between brain structure and learning task. Physiol. Behav. 10, 747–750.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Sebastian P. Grossman
    • 1
  1. 1.Committee on BiopsychologyThe University of ChicagoChicagoUSA

Personalised recommendations