Circulating Sialyl Compounds

  • Abraham Rosenberg
  • Cara-Lynne Schengrund


A number of biologically active glycoproteins found in mammalian plasma contain sialic acid. The role(s) of sialic acid on circulating sialoglycoproteins has received much attention during the past 10–15 years. Areas of particular interest are (1) circulating sialoglycoproteins in disease and (2) the function of sialic acid in determining survival time of circulating sialoglycoproteins. Changes in the levels of plasma sialoglycoproteins have been reported in a variety of diseases (for review, Spiro, 1970; Winzler, 1971). Changes in sialic acid content of specific circulating sialoglycoproteins affect their rate of clearance from plasma (for review, Ashwell and Morell, 1975). Enzymatic, hormonal, and immunogenic activities of various sialoglycoproteins have been found to be related in some degree to their sialic acid content. This chapter will not attempt to review all the work that has been done on circulating sialoglycoproteins, but will restrict itself to aspects of the following: (a) a survey of circulating sialoglycoproteins, (b) changes in plasma sialic acid levels in disease, and (c) possible biological roles for sialic acid. Synthesis and catabolism of sialic-acid-containing compounds are reviewed in Chapters 4 and 5, respectively.


Sialic Acid Sialic Acid Residue Neuraminic Acid Serum Cholinesterase Sialic Acid Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agishev, V. G., 1970, Concerning the changes of the proteins in the blood serum in some infectious psychoses, Psikhiar. S. S. Korsakova 70: 1343–1348.Google Scholar
  2. Anderson, A. J., 1965, Factors affecting the amount and composition of the serum seromucoid fraction, Nature 208: 491–492.PubMedGoogle Scholar
  3. Arfors, K. E., Beckman, L., and Lundin, L. G., 1963, Further studies on the association between human serum phosphatases and blood groups, Acta Genet. Statist. 13: 366–368.Google Scholar
  4. Ashwell, G., and Morell, A. G., 1975, The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins, Adv. Enzymol. 41: 99–128.Google Scholar
  5. Athineos, E., Thornton, M., and Winzler, R. J., 1962, Comparative antigenicity of native and “desialized” orosomucoid in rabbits, Proc. Soc. Exp. Biol. Med. 111: 353–356.PubMedGoogle Scholar
  6. Augustinsson, K.-B., and Ekedahl, G., 1962, The properties of neuraminidase-treated serum cholinesterase, Biochim. Biophys. Acta 56: 392–393.PubMedGoogle Scholar
  7. Baker, E., Shaw, D. C., and Morgan, E. H., 1968, Isolation and characterization of rabbit serum and milk transferrins. Evidence for difference in sialic acid content only, Biochemistry 7: 1371–1378.PubMedGoogle Scholar
  8. Bates, R. W., and Warren, L., 1963, Studies on the sialic acid content of thyroid glands, Endocrinology 73: 1–4.PubMedGoogle Scholar
  9. Barr, W. A., and Collee, J. G., 1967, Differences in the biological and immunological activities of human chorionic gonadotiopin after removal of sialic acid by enzymic hydrolysis, J. Endocrinol. 38: 395–399.PubMedGoogle Scholar
  10. Bell, O. F., and Carrell, R. W., 1973, Basis of the defect in α-1-antitrypsin deficiency, Nature 243: 410–411.PubMedGoogle Scholar
  11. Blumberg, B. S., and Warren, L., 1961, The effect of sialidase on transferrins and other serum proteins, Biochim. Biophys. Acta 50: 90–101.Google Scholar
  12. Bocci, V., Viti, A., Russi, M., and Rita, G., 1971, Isoelectric fractionation of desialyzed interferon. Experientia 27: 1160–1161.PubMedGoogle Scholar
  13. Bosmann, H. B., 1974, Red cell hydrolases. Vox Sang. 26: 497–512.PubMedGoogle Scholar
  14. Braunstein, G. D., Reichert, Jr., L. E., Van Hall, E. V., Vaitukaitis, J. L., and Ross, G. T., 1971, The effects of desialylation on the biologic and immunologic activity of human pituitary luteinizing hormone, Biochem. Biophys. Res. Commun. 42: 962–967.PubMedGoogle Scholar
  15. Cabezas, J. A., and Porto, E., 1970, Acidos Siálicos. XIII. Contenido en acido N-acetilneuramínico, hexosaminas y ácido pirúvico, y actividad N-acetil-β-glucosaminidásica de sueros normales y cancerosos, Rev. Esp. Fisiol. 26: 339–345.PubMedGoogle Scholar
  16. Chakrabarti, T., Pawar, R. B., Shastri, M. G., Choudhary, D. R., Chakrabarti, C. H., and Dias, P. D., 1972, N-Acetyl neuraminic acid level in the erythrocyte membrane and serum of patients suffering from diabetes mellitus, Ind. J. Med. Res. 60: 1038–1042.Google Scholar
  17. Chandrasekhar, N., Warren, L., Osbahr, A. J., and Laki, K., 1962, Role of sialic acid in fibrinogen, Biochim. Biophys. Acta 63: 337–339.PubMedGoogle Scholar
  18. Chandrasekhar, N., Osbahr, A. J., and Laki, K., 1966, Identification of sialic acids in human and bovine fibrinogen, Biochem. Biophys. Res. Commun. 23: 757–760.PubMedGoogle Scholar
  19. Chen, S.-H., and Sutton, H. E., 1967, Bovine transferrins: Sialic acid and the complex phenotype, Genetics 56: 425–430.PubMedGoogle Scholar
  20. Clamp, J. R., and Johnson, I., 1972, Immunoglobulins in: Glycoproteins, Part A (A. Gottschalk, ed.) p. 612–652, Elsevier Publishing Co., New York.Google Scholar
  21. Cowan, N. J., and Robinson, G. B., 1972, The sequence of addition of terminal sugars to an immunoglobulin a myeloma protein, Biochem. J. 126: 751–754.PubMedGoogle Scholar
  22. Cuatrecases, P., and Illiano, G., 1971, Membrane sialic acid and the mechanism of insulin action in adipose tissue cells, J. Biol: Chem. 246: 4938–4946.Google Scholar
  23. Cunningham, L. W., 1971, Microheterogeneity and Function of Glycoproteins in Glycoproteins of Blood Cells and Plasma (G. A. Jamieson and T. J. Greenwalt, eds.), pp. 34–61, Lippincott Co., Philadelphia.Google Scholar
  24. Davis, M. M., and Richmond, J. E., 1968, Effect of dietary protein on serum proteins, Am. J. Physiol. 215: 366–369.PubMedGoogle Scholar
  25. De Moor, P., Bouillon, R., and Van Mieghem, W., 1970, Transcortin activity as related to the age at discovery of diabetes mellitus, Clin. Chim. Acta 30: 627–633.PubMedGoogle Scholar
  26. Engen, R. L., 1970, Effect of steroids on serum sialic acid values in the canine, Proc. Soc. Exp. Biol. Med. 135: 778–780.PubMedGoogle Scholar
  27. Engen, R. L., 1971, Serum sialic acid values in dogs with canine distemper, Am. J. Vet. Res. 32: 803–804.PubMedGoogle Scholar
  28. Finnegan, D. J., and Hope, R. M., 1970, The role of sialic acid in the serum amylase isoenzyme pattern of the marsupial mouse Sminthopsis crassicaudata, Austr. J. Exp. Biol. Med. Sci. 48: 237–240.Google Scholar
  29. Gattegno, L., Bladier, D., and Cornillot, P., 1974, The role of sialic acid in the determination of survival of rabbit erythrocytes in the circulation, Carbohydrate Res. 34: 361–369.Google Scholar
  30. Goldwasser, E., Kung, C. K.-H., and Eliason, J., 1974, On the mechanism of erythropoietin-induced differentiation. XIII. The role of sialic acid in erythropoietin action, J. Biol. Chem. 249: 4202–4206.PubMedGoogle Scholar
  31. Got, R., Cheftel, R.-I., Font, J., and Moretti, J., 1967, Étude de L’ α1-macroglobuline du serum de lapin. III. Biochimie de la copule glucidique, Biochim. Biophys. Acta 136: 320–330.PubMedGoogle Scholar
  32. Gottschalk, A., Whitten, W. K., and Graham, E. R. B., 1960, Inactivation of folliclestimulating hormone by enzymic release of sialic acid, Biochim. Biophys. Acta 38: 183–184.PubMedGoogle Scholar
  33. Gregoriadis, G., Morell, A. G., Steinlieb, I., and Scheinberg, I. H., 1970, Catabolism of desialylated ceruloplasmin in the liver, J. Biol. Chem. 245: 5833–5837.PubMedGoogle Scholar
  34. Green, W. A., and Kay, C. M., 1963, The influence of organic solvents and enzyme modification on the secondary structure of fetuin, J. Biol. Chem. 238: 3640–3644.PubMedGoogle Scholar
  35. Heilbronn, E., 1962, Treatment of horse serum cholinesterase with sialidase, Acta Chem. Scand. 16: 516.Google Scholar
  36. Heyward, J. T., Coleman, M. T., and Dowdle, W. R., 1972, Influenza antihemagglutinin and antinuraminidase activity of IgG and IgM in reference chicken antisera, Proc. Soc. Exp. Biol. Med. 140: 1289–1293.PubMedGoogle Scholar
  37. Howard, C. B., and Kelleher, P. C., 1971, Plasma fucose and sialic acid concentrations during oral glucose tolerance tests in normal and diabetic (mellitus) humans, Clin. Chim. Acta 31: 75–80.PubMedGoogle Scholar
  38. Itoh, C., Hashimoto, I., Onuma, Y., and Ishitoya, Y., 1968, Inhibitory effects of monoclonal immunoglobulins on anti-globulin reaction, Tohoku J. Exp. Med. 94: 307–313.Google Scholar
  39. Jakab, J. F., and Takács, L., 1970, Effect of liver injury and of induced inflammation on the serum glycoprotein level, Acta Med. Acad. Sci. Hung. 27: 57–63.PubMedGoogle Scholar
  40. Jamieson, G. A., 1963, Carbohydrate chains of human transferrin, Fed. Proc. 22: 538.Google Scholar
  41. Jamieson, G. A., 1965, Studies on glycoproteins. 1. The carbohydrate portion of human ceruloplasmin, J. Biol. Chem. 240: 2019–2027.PubMedGoogle Scholar
  42. Jamieson, G. A., 1971, in: Glycoproteins of Blood Cells and Plasma (G. A. Jamieson and T. J. Greenwalt, eds.), p. 68, Lippincott Co., Philadelphia.Google Scholar
  43. Jamieson, G. A., 1972, Ceruloplasmin, in Glycoproteins, Part A (A. Gottschalk, ed.), Elsevier Publishing Co., p. 676–685, New York.Google Scholar
  44. Johnson, C. A., Lvstad, R. A., Walaas, E., and Walaas, O., 1970, The properties of neuraminidase-treated crystalline ceruloplasmin, Experientia 26: 134–135.PubMedGoogle Scholar
  45. Kasavina, B. S., and Kolchinskaya, T. A., 1966, Studies of the human thyroid in some pathological conditions, Clin. Chim. Acta 13: 685–693.PubMedGoogle Scholar
  46. Kristjansson, F. K., and Cipera, J. D., 1963, The effect of sialidase on pig transferrins, Can. J. Biochem. Physiol. 41: 2523–2527.PubMedGoogle Scholar
  47. Kunii, H., 1971, Inactivation of human chorionic gonadotropin extracted from chorionic tissue and serum by neuraminidase, Tohoku J. Exp. Med. 105: 317–325.PubMedGoogle Scholar
  48. Laurell, C.-B., 1965, Effect of neuraminidase, acetone, and chloroform on α1-antitrypsins, Scand. J. Clin. Lab. Invest. 17: 297–298.PubMedGoogle Scholar
  49. Lowy, P. H., Keighley, G., and Borsook, H., 1960, Inactivation of erythropoietin by neuraminidase and by mild substitution reactions, Nature 185: 102–103.PubMedGoogle Scholar
  50. Main, A. R., Tarkan, E., Aull, J. L., and Soucie, W. G., 1972, Purification of horse serum cholinesterase by preparative Polyacrylamide gel electrophoresis, J. Biol. Chem. 247: 566–571.PubMedGoogle Scholar
  51. Malashevich, E. V., 1970, Dependence of the sialic acid content in tissues on functional state of the hypophysis-adrenal systems, Ukr. Biokhim. Zh. 42: 56–59.PubMedGoogle Scholar
  52. Margolis, F., and Feigelson, P., 1964, Atropinesterase, a sialoprotein, Biochim. Biophys. Acta 89: 357–360.PubMedGoogle Scholar
  53. Marshall, J. S., Green, A. M., Pensky, J., Williams, S., Zinn, A., and Carlson, D. M., 1974, Measurement of circulating desialylated glycoproteins and correlation with hepatocellular damage, J. Clin. Invest. 54: 555–562.PubMedGoogle Scholar
  54. Mester, L., Moczar, E., and Laki, K., 1963, Structure et rôle de la partie glucidique du fibrinogène et de la fibrine: Sur les liaisons des composeś glucidiques, Séance 256: 307–308.Google Scholar
  55. Morell, A. G., Van Den Hamer, C. J. A., Scheinberg, I. H., and Ashwell, G. A., 1966, Preparation of radioactive sialic acid-free ceruloplasmin labelled with tritium on terminal D-galactose residues, 1966, J. Biol. Chem. 241: 3745–3749.PubMedGoogle Scholar
  56. Morell, A. G., Irvine, R. A., Steinlieb, I., Scheinberg, I. H., and Ashwell, G., 1968, Physical and chemical studies on ceruloplasmin, J. Biol. Chem. 243: 155–159.PubMedGoogle Scholar
  57. Morell, A. G., Gregoriadis, G., Scheinberg, I. H., Hickman, J., and Ashwell, G., 1971, The role of sialic acid in determining the survival of glycoproteins in the circulation, J. Biol. Chem. 246: 1461–1467.PubMedGoogle Scholar
  58. Murthy, P. V. H., Raghupathy, E., and Chaikoff, I. L., 1965, Studies on thyroid proteins. I. Isolation and properties of a glycopeptide from sheep thyroglobulin, Biochem. 4: 611–618.Google Scholar
  59. Nelsestuen, G. L., and Suttie, J. W., 1971, Properties of asialo and aglycoprothrombin, Biochem. Biophys. Res. Commun. 45: 198–203.PubMedGoogle Scholar
  60. Niedermeier, W. Schrohenloher, R. E., and Hurst, M., 1972, The localization of oligosaccharides in a human IgM protein, J. Immunol. 108: 346–351.PubMedGoogle Scholar
  61. Nolan, C., and Smith, E. L., 1962, Glycopeptides. II. Isolation and properties of glycopeptides from rabbit γ-globulin, J. Biol. Chem. 237: 446–452.PubMedGoogle Scholar
  62. Oshiro, Y., and Eylar, E. H., 1968, Physical and chemical studies on glycoproteins. III. The microheterogeneity of fetuin, a fetal calf serum glycoprotein, Arch. Biochem. Biophys. 127: 476–489.PubMedGoogle Scholar
  63. Parker, W. C., and Beam, A. G., 1962, Studies on the transferrins of adult serum, cord serum, and cerebrospinal fluid: The effect of neuraminidase, J. Exp. Med. 115: 83–105.PubMedGoogle Scholar
  64. Pepper, D. S., 1968, The sialic acids of horse serum with special reference to their virus inhibitor properties, Biochim. Biophys. Acta 156: 317–326.PubMedGoogle Scholar
  65. Perona, G., Cortesi, S., Xodo, P., Scandellari, C., Ghiotto, G., and de Sandre, G., 1964, Variations of in vivo survival, acetylcholinesterase activity and sensitivity to acid lysis in human erythrocytes treated with proteolytic enzymes and neuraminidase, Acta Istopocia 4: 287–295.Google Scholar
  66. Pidemsky, E. L., and Afonina, T. D., 1970, The effect of some antiphlogistic preparations on the content of mucopolysaccharides in the blood and liver homogenates, Patol. Fizioli Eksp. Ter. 14: 74–76.Google Scholar
  67. Pricer, W. E., and Ashwell, G., 1971, The binding of desialylated glycoproteins by plasma membranes of rat liver, J. Biol. Chem. 246: 4825–4833.PubMedGoogle Scholar
  68. Rao, V. S., and Sirsi, M., 1970, Serum sialic acid in rats bearing yoshida ascites sarcoma, Ind. J. Biochem. 7: 184–186.Google Scholar
  69. Regoeczi, E., and Hatton, M. W. C., 1974, Studies of the metabolism of asialotransferrins: The mechanism for the hypercatabolism of human asialotransferrin in the rabbit, Can. J. Biochem. 52: 645–651.PubMedGoogle Scholar
  70. Regoeczi, E., Hatton, M. W. C., and Wong, K.-L., 1974, Studies of the metabolism of asialotransferrins: Potentiation of the catabolism of human asialotransferrin in the rabbit, Can. J. Biochem. 52: 155–161.PubMedGoogle Scholar
  71. Robinson, J. C., and Pierce, J. E., 1964, Studies on inherited variants of blood proteins. III. Sequential action of neuraminidase and galactose oxidase on transferrin B1–2b2, Arch. Biochem. Biophys. 106: 348–352.PubMedGoogle Scholar
  72. Robinson, J. C., and Pierce, J. E., 1964, Differential action of neuraminidase on human serum alkaline phosphatases, Nature 204: 472–473.PubMedGoogle Scholar
  73. Robinson, J. C., Pierce, J. E., and Blumberg, B. S., 1966, The serum alkaline phosphatase of pregnancy, Am. J. Obst. Gynec. 94: 559–565.Google Scholar
  74. Rogers, J. C., and Kornfeld, S., 1971, Hepatic uptake of proteins coupled to fetuin glycopeptide, Biochem. Biophys. Res. Commun., 45: 622–629.PubMedGoogle Scholar
  75. Rule, A. H., and Boyd, W. C., 1964, Relationships between blood group agglutinogens: Role of sialic acids, Transfusion 4: 449–456.PubMedGoogle Scholar
  76. Sairam, M. R., and Moudgal, N. R., 1971, On the mechanism of action of the monkey urinary follicle stimulating hormone inhibitor—Its sialidase activity, Ind. J. Biochem. Biophys. 8: 141–146.Google Scholar
  77. Scharmann, W., Brückler, J., and Blobel, H., 1971, Wirkung bakterieller Neuraminidasen auf Transferrin vom Menschen, Rind und Kaninchen, Biochim. Biophys. Acta 229: 136–142.PubMedGoogle Scholar
  78. Schengrund, C.-L., Jensen, D., and Rosenberg, A., 1972, Localization of sialidase in the plasma membrane of rat liver cells, J. Biol. Chem., 247: 2742–2746.PubMedGoogle Scholar
  79. Schmid, K., Burke, J. F., Debray-Sachs, M., and Tokita, K., 1964, Sialic acid-deficient α1-acid glycoprotein produced in certain pathological states, Nature 204: 75–76.PubMedGoogle Scholar
  80. Schooley, J. C., and Garcia, J. F., 1971, The destruction by neuraminidase of the biological activity of erythropoietin when complexed with antierythropoietin, Proc. Soc. Exp. Biol. Med. 138: 66–68.PubMedGoogle Scholar
  81. Schooley, J. C., and Mahlmann, L. J., 1971, Inhibition of the biologic activity of erythropoietin by neuraminidase in vivo, J. Lab. Clin. Med. 78: 765–770.PubMedGoogle Scholar
  82. Schultze, H. E., 1958, Über Glykoproteine. Deut. Med. Wochschr. 83: 1742–1752.Google Scholar
  83. Schultze, H. E., Gollner, I., Heide, K., Schonenberger, M., and Schwick, G. Z., 1955, Zur Kenntnis der α-Globuline des menschlichen Normalserums, Z. Naturforsch. 106: 463–473.Google Scholar
  84. Schultze, H. E., Schmidtberger, R., and Haupt, H., 1958, Untersuchungen uber die gebundenen Kohlenhydrate in isolierten Plasmaproteiden, Biochem. Z. 329: 490–507.PubMedGoogle Scholar
  85. Sharma, N. C., and Sur, B. K., 1967, Serum fucose and sialic acid levels in indian children and adults under normal and pathological conditions, Ind. J. Med. Res. 55: 380–384.Google Scholar
  86. Shetlar, M. R., Foster, J. V., Kelly, K. H., Shetlar, C. L., Bryan, R. S., and Everett, M. R., 1949, The serum polysaccharide level in malignancy and in other pathological conditions, Cancer Res. 9: 515–519.PubMedGoogle Scholar
  87. Shome, B., Parlow, A. F., Ramirez, V. D., Elrick, H., and Pierce, J. G., 1968, Human and porcine thyrotropins: A comparison of electrophoretic and immunological properties with the bovine hormone, Arch. Biochem. Biophys. 103: 444–455.Google Scholar
  88. Shownkeen, R. C., Thomas, M. B., and Hartree, A. A., 1973, Sialic acid and tryptophan content of subunits of human pituitary luteinizing hormone, J. Endocrinol. 59: 201–202.PubMedGoogle Scholar
  89. Shvartz, L. S., and Paukman, L. I., 1971, Diabetic angiopathies and mucopolysaccharide metabolism, Probl. Endocrinol. 17: 37–41.Google Scholar
  90. Singh, R., Sur, B. K., Agarwal, S. N., and Ramraju, B., 1967, Serum sialic acid in malignancy, Ind. J. Med. Res. 55: 270–273.Google Scholar
  91. Sjöholm, I., 1967, Biochemical studies on oxytocin and oxytocinase, Acta Pharm. Suedcica 4: 81–96.Google Scholar
  92. Spiegelberg, H. L., and Weigle, W. O., 1966, Studies on the catabolism of γ subunits and chains, J. Immunol. 95: 1034–1040.Google Scholar
  93. Spiro, R. G., 1960, Studies on fetuin, a glycoprotein of fetal serum I. Isolation, chemical composition, and physicochemical properties, J. Biol. Chem. 235: 2860–2869.PubMedGoogle Scholar
  94. Spiro, R. G., 1970, Structure metabolism and biology of glycoproteins, Ann. Rev. Biochem. 39: 599–638.PubMedGoogle Scholar
  95. Spiro, M. J., and Spiro, R. G., 1962, Composition of the peptide portion of fetuin, J. Biol. Chem. 237: 1507–1510.PubMedGoogle Scholar
  96. Spiro, R. G., and Spiro, M. J., 1965, The carbohydrate composition of the thyroglobulins from several species, J. Biol. Chem. 240: 997–1001.PubMedGoogle Scholar
  97. Spiro, M. J., and Spiro, R. G., 1968, Glycoprotein biosynthesis: Studies on thyroglobulin, J. Biol. Chem. 243: 6520–6528.PubMedGoogle Scholar
  98. Stratel, A., and Spooner, R. L., 1971, Isolation and properties of individual components of cattle transferrin: The role of sialic acid, Biochem. Genetics 5: 347–365.Google Scholar
  99. Svensmark, O., 1961, Human-serum cholinesterase as a sialo-protein, Acta Physiol. Scand. 52: 267–275.PubMedGoogle Scholar
  100. Svensmark, O., and Kristensen, P., 1962, Electrophoretic mobility of sialidase-treated human serum cholinesterase, Danish Med. Bull. 9: 16–17.PubMedGoogle Scholar
  101. Svensmark, O., and Kristensen, P., 1963, Isoelectric point of native and sialidase-treated human-serum cholinesterase, Biochim. Biophys. Acta 67: 441–452.PubMedGoogle Scholar
  102. Taoka, Y., and Fillios, L. C., 1971, Early effects of protein depletion on hepatic glycoprotein synthesis in the rat, J. Nutr. 101: 93–100.PubMedGoogle Scholar
  103. Tuppy, H., Wiesbauer, U., and Wintersberger, E., 1963, Uber die Einwirkung von Neuraminidase auf die Serumoxytocinase, Mh. Chem. 94: 321–328.Google Scholar
  104. van den Hamer, C. J. A., Morell, A. G., Scheinberg, I. H., Hickman, J., and Ashwell, G., 1970, Physical and chemical studies on ceruloplasmin. IX. The role of galactosyl residues in the clearance of ceruloplasmin from the circulation, J. Biol. Chem. 245: 4397–4402.Google Scholar
  105. Vaitukaitis, J. L., and Ross, G. T., 1971, Altered biologic and immunologic activities of progressively desialylated human urinary FSH, J. Clin. Endocrinol. Metab. 33: 308–311.PubMedGoogle Scholar
  106. Van Hall, E., Vaitukaitis, J. L., Ross, G. T., Hickman, J. W., and Ashwell, G., 1971, Immunological and biological activity of HCG following progressive desialylation, Endocrinology 88: 456–464.PubMedGoogle Scholar
  107. Vermylen, J., Donati, M. B., de Gaetano, G., and Verstraete, M., 1973, Aggregation of human platelets by bovine or human factor. VIII: Role of carbohydrate side chains, Nat. New Biol. 244: 167–168.Google Scholar
  108. Vermylen, J., de Gaetano, G., Donati, M. B., and Verstraete, M., 1974, Plateletaggregating activity in neuraminidase-treated human cryoprecipitates: Its correlation with factor-VIII-related antigen. Br. J. Haematol. 26: 645–650.PubMedGoogle Scholar
  109. Visser, A., and Emmelot, P., 1973, Studies on plasma membranes. XX. Sialidase in hepatic plasma membranes, J. Membrane Biol. 14: 73–84.Google Scholar
  110. Warren, L., 1959, The thiobarbituric acid assay of sialic acids, J. Biol. Chem. 234: 1971–1975.PubMedGoogle Scholar
  111. Whitten, W. K., 1948, Inactivation of gonadotropins. II. Inactivation of pituitary and chorionic gonadotropins by influenza virus and receptor destroying enzyme, Austr. J. Sci. Res. B 1: 388–390.Google Scholar
  112. Winzler, R. J., 1955, Determination of Serum Glycoproteins. Methods of Biochemical Analysis. 2: 279–311.PubMedGoogle Scholar
  113. Winzler, R., 1960, Glycoproteins, in: The Plasma Proteins (F. W. Putnam, ed.) pp. 309–347, Academic Press, New York.Google Scholar
  114. Winzler, R., 1971, Glycoproteins in disease in: Glycoproteins of Blood Cells and Plasma (G. A. Jamieson and T. J. Greenwalt, eds.), pp. 204–213, Lippincott Co., Philadelphia.Google Scholar
  115. Winzler, R., and Bocci, V., 1972, Turnover of plasma glycoproteins, in: Glycoproteins, Part B (A. Gottschalk, ed.), pp. 1228–1245, Elsevier Publishing Co., New York.Google Scholar
  116. Woodman, R. J., 1974, Carbocyanine dye metachromasia of sialidase-sensitive polyanions in sera from normal and tumor-bearing mice, Cancer Res. 34: 2897–2905.PubMedGoogle Scholar
  117. Woodruff, J. J., and Gesner, B. M., 1969, The effects of neuraminidase on the fate of transfused lymphocytes, J. Exp. Med. 129: 551–567.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Abraham Rosenberg
    • 1
  • Cara-Lynne Schengrund
    • 1
  1. 1.Department of Biological Chemistry, The Milton S. Hershey Medical CenterThe Pennsylvania State UniversityHersheyUSA

Personalised recommendations