The Biological Role of Sialic Acid at the Surface of the Cell

  • Roger W. Jeanloz
  • John F. Codington


Hirst (1945; 1948) was the first to suggest that the substrate for the “receptor destroying enzyme” of influenza virus, later recognized as sialidase (neuraminidase, see Chapter 10), was a carbohydrate compound located in the outer membrane of the red blood cell after observing that periodate oxidation “destroys” the cellular receptor. This suggestion was supported by Fazekas de St. Groth (1949), who was able to eliminate by mild periodate oxidation the substrate activity without impairing the adsorption of the influenza virus. In the following years, the cellular receptors for the influenza virus were shown to contain galactose, galactosamine, and sialic acid (McCrea, 1954; Klenk and Stoffel, 1956; Yamakawa et al., 1956) and, in 1957, Klenk and Lempfrid isolated pure, crystalline N-acetylneuraminic acid after neuraminidase treatment of human erythrocytes. Since erythrocyte stroma contains sialic acid residues linked to gangliosides or glycoproteins, it may be assumed that sialic acid exists as a component of these two classes of compounds at the surface of the cell.


Influenza Virus Sialic Acid Infectious Bronchitis Virus Sialic Acid Residue Tetanus Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abercrombie, M., and Ambrose, E. J., 1962, The surface properties of cancer cells: A review, Cancer Res. 22: 525.PubMedGoogle Scholar
  2. Allen, A. K., Neuberger, A., and Sharon, N., 1973, The purification, composition and specificity of wheat-germ agglutinin, Biochem. J. 131: 155.PubMedGoogle Scholar
  3. Apffel, C. A., and Peters, J. H., 1970, Regulation of antigenic expression, J. Theor. Biol. 26: 47.PubMedCrossRefGoogle Scholar
  4. Ashwell, G., and Morell, A. G., 1971, Galactose: A cryptic determinant of glycoprotein catabolism, in: Glycoproteins of Blood Cells and Plasma (G. A. Jamieson and T. J. Greenwalt, eds.), pp. 173–189, Lippincott, Philadelphia.Google Scholar
  5. Ashwell, G., and Morell, A. G., 1974, The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins, Adv. Enzymol. 41: 99.PubMedGoogle Scholar
  6. Atherton, A., and Born, G. V., 1973, Effects of neuraminidase and N-acetyl neuraminic acid on the adhesion of circulating granulocytes and platelets in venules, J. Physiol. (Lond.) 234: 66P.Google Scholar
  7. Balazs, E. A., and Jacobson, B., 1966, Interaction of amino sugars and amino sugarcontaining macromolecules with viruses, cells, and tissues, in: The Amino Sugars (E. A. Balazs and R. W. Jeanloz, eds.), Vol. IIB, pp. 361–395, Academic Press, New York.Google Scholar
  8. Bekesi, J. G., St. Arneault, G., and Holland, J. F., 1971, Increase of leukemia L1210 immunogenicity by Vibrio cholerae neuraminidase treatment, Cancer Res. 31: 2130.PubMedGoogle Scholar
  9. Berwick, L., and Coman, D. R., 1962, Some chemical factors in cellular adhesion and stickiness, Cancer Res. 22: 982.Google Scholar
  10. Bhavanandan, V. P., and Davidson, E. A., 1975, Personal communication.Google Scholar
  11. Bird, G. W. G., and Wingham, J., 1970, N-Acetylneuraminic (sialic) acid and human blood group antigen structure, Vox. Sang. 18: 240.PubMedCrossRefGoogle Scholar
  12. Blix, G., and Jeanloz, R. W., 1969, Sialic acids and muramic acid, in: The Amino Sugars (R. W. Jeanloz, ed.), Vol. I A, pp. 213–265, Academic Press, New York.Google Scholar
  13. Born, G. V. R., 1974, Research on the mechanisms of the intravascular adhesion of circulating cells, in: Platelets and Thrombosis (S. Sherry and A. Scriabine, eds.), pp. 113–126 University Park Press, Baltimore.Google Scholar
  14. Bosmann, H. B., 1972, Platelet adhesiveness and aggregation. II. Surface sialic acid, glycoprotein: N-acetylneuraminic acid transferase, and neuraminidase of human blood platelets, Biochim. Biophys. Acta 279: 456.PubMedCrossRefGoogle Scholar
  15. Bray, B. A., and Alexander, B., 1969, Progressive cleavage of sialic acid from platelets and their electrophoretic mobility, Blood 34: 523.Google Scholar
  16. Brecht, H., Ammerling, U., and Rott, R., 1971, Undisturbed release of influenza virus in the presence of univalent antineuraminidase antibodies, Virology 46: 337.PubMedCrossRefGoogle Scholar
  17. Brown, D. M., and Michael, A. F., 1969, Effect of neuraminidase on the accumulation of alpha-aminoisobutyric acid in HeLa cells, Proc. Soc. Exp. Biol. Med. 131: 568.PubMedGoogle Scholar
  18. Burger, M. M., 1969, A difference in the architecture of the surface membrane of normal and virally transformed cells, Proc. Natl. Acad. Sci. U. S. 62: 994.CrossRefGoogle Scholar
  19. Burnet, F. M., 1951, Microproteins in relation to virus action, Physiol. Rev. 31: 131.PubMedGoogle Scholar
  20. Burnet, F. M., and Anderson, S. G., 1947, The “T” antigen of guinea pig and human red cells, Austr. J. Exp. Biol. Med. Sci. 25: 213.CrossRefGoogle Scholar
  21. Burton, R. M., and Balfour, Y. M., 1962, Tetanus toxin activity and ganglioside content of rat brain, Biochem. Pharmacol. 11: 974.PubMedCrossRefGoogle Scholar
  22. Choi, S.-I., Simone, J. V., and Journey, C. J., 1972, Neuraminidase-induced thromboctopenia in rats, Br. J. Haematol. 22: 93.PubMedCrossRefGoogle Scholar
  23. Choppin, P. W., and Schied, A., 1974, Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis, and infectivity by proteolytic cleavage of an inactive precursor protein of Sendai virus, Virology 57: 475.PubMedCrossRefGoogle Scholar
  24. Cikes, M., Friberg, S., Jr., and Klein, G., 1973, Progressive loss of H-2 antigens with concomitant increase of cell-surface antigen(s) determined by Moloney leukemia virus in cultured mucine lymphomas, J. Natl. Cancer Inst. 50: 347.PubMedGoogle Scholar
  25. Clowes, A. W., Cherry, R. J., and Chapman, D., 1972, Physical effects of tetanus toxin on model membranes containing ganglioside, J. Mol. Biol. 67: 49.PubMedCrossRefGoogle Scholar
  26. Codington, J. F., 1975, Masking of cell-surface antigens on cancer cells, in: Cellular Membranes and Tumor Cell Behavior 28th Annual Symposium, M. D. Anderson Hospital and Tumor Institute, Houston, pp. 399–419, William and Wilkins, Baltimore.Google Scholar
  27. Codington, J. F., Sanford, B. H., and Jeanloz, R. W., 1970, Glycoprotein coat of the TA3 cell. I. Removal of carbohydrate and protein material from viable cells, J. Natl. Cancer Inst. 45: 637.PubMedGoogle Scholar
  28. Codington, J. F., Sanford, B. H., and Jeanloz, R. W., 1972, Glycoprotein coat of the TA3 cell. Isolation and partial characterization of a sialic acid containing glycoprotein fraction, Biochemistry 11: 2559.PubMedCrossRefGoogle Scholar
  29. Codington, J. F., Sanford, B. H., and Jeanloz, R. W., 1973, Cell surface glycoproteins of two sublines of the TA3 tumor, J. Natl. Cancer Inst. 51: 585.PubMedGoogle Scholar
  30. Codington, J. F., Tuttle, B., and Jeanloz, R. W., 1974, Methods for the removal, isolation and characterization of glycoprotein fragments from the TA3 tumor cell surface, Colloq. Int. Cent. Natl. Rech. Sci. 221: 957.Google Scholar
  31. Codington, J. F., Linsley, K. B., Jeanloz, R. W., Irimura, T., and Osawa, T., 1975a, Immunochemical and chemical investigations of the structure of glycoprotein fragments obtained from epiglycanin, a glycoprotein at the surface of the TA3-Ha cancer cell, Carbohyd. Res. 40: 171.CrossRefGoogle Scholar
  32. Codington, J. F., Cooper, A. G., Brown, M. C., and Jeanloz, R. W., 1975b, Evidence that the major cell surface glycoprotein of the TA3-Ha carcinoma contains the Vicia graminea receptor sites, Biochemistry 14: 855.PubMedCrossRefGoogle Scholar
  33. Coman, D. R., 1961, Adhesiveness and stickiness: Two independent properties of the cell surface, Cancer Res. 21: 1436.PubMedGoogle Scholar
  34. Constantopoulos, A., and Najjar, V. A., 1973, The requirement of membrane sialic acid in the stimulation of phagocytosis by the natural tetrapeptide, tuftsin, J. Biol. Chem. 248: 3819.PubMedGoogle Scholar
  35. Cook, G. M. W., and Stoddart, R. W., 1973, Surface Carbohydrates of the Eukaryotic Cell, Academic Press, New York.Google Scholar
  36. Cook, G. M. W., Heard, D. H., and Seaman, F., 1960, A sialomucopeptide liberated by trypsin from the human erythrocyte, Nature (Lond.) 188: 1011.CrossRefGoogle Scholar
  37. Cook, G. M. W., Heard, D. H., and Seaman, F., 1961, Sialic acids and the electrokinetic charge of the human erythrocyte, Nature (Lond.) 191: 44.CrossRefGoogle Scholar
  38. Cook, G. M. W., Heard, D. H., and Seaman, G. V. F., 1962, The electrokinetic characterization of the Ehrlich ascites carcinoma cell, Exp. Cell Res. 28: 27.PubMedCrossRefGoogle Scholar
  39. Cook, G. M. W., Seaman, G. V. F., and Weiss, L., 1963, Physicochemical differences between ascitic and solid forms of Sarcoma 37 cells, Cancer Res. 23: 1813.PubMedGoogle Scholar
  40. Cormack, D., 1970, Effect of enzymatic removal of sialic acid on the adherence of Walker 256 tumour cells to mesothelial membrane, Cancer Res. 30: 1459.PubMedGoogle Scholar
  41. Cuatrecasas, P., and Illiano, G., 1971, Membrane sialic acid and the mechanism of insulin action in adipose tissue cells, J. Biol. Chem. 246: 4938.PubMedGoogle Scholar
  42. Currie, G. A., 1967, Masking of antigens on the Landschütz ascites tumor, Lancet 1967(2): 1336.CrossRefGoogle Scholar
  43. Currie, G. A., and Bagshawe, K. D., 1967, The masking of antigens on trophoblast and cancer cells, Lancet 1967(1): 708.CrossRefGoogle Scholar
  44. Currie, G. A., and Bagshawe, K. D., 1968a, The effect of neuraminidase on the immunogenicity of the Landschütz ascites tumor: Site and mode of action, Br. J. Cancer 22: 588.PubMedCrossRefGoogle Scholar
  45. Currie, G. A., and Bagshawe, K. D., 1968b, The role of sialic acid in antigenic expression: Further studies of the Landschütz ascites tumor, Br. J. Cancer 22: 843.PubMedCrossRefGoogle Scholar
  46. Curtis, A. S. G., 1960, Cell contacts: Some physical considerations, Am. Nat. 94: 37.CrossRefGoogle Scholar
  47. Curtis, A. S. G., 1962, Cell contact and adhesion, Biol. Rev. 37: 82.PubMedCrossRefGoogle Scholar
  48. Curtis, A. S. G., 1967, The Cell Surface: Its Molecular Role in Morphogenesis, Logos Press, Academic Press, London.Google Scholar
  49. Davis, J. W., Yue, K. T. N., and Phillips, P. E., 1972, The effect of neuraminidase on platelet aggregation induced by ADP, norepinephrine, collagen or serotonin, Thromb. Diath. Haemorrh. 28: 221.PubMedGoogle Scholar
  50. Deman, J. J., and Bruyneel, E., 1973, A method for the quantitative measurement of cell aggregation, Exp. Cell Res. 81: 351.PubMedCrossRefGoogle Scholar
  51. Deman, J. J., and Bruyneel, E. A., 1975, Intercellular adhesiveness and neuraminidase effect following release from density inhibition of cell growth, Biochem. Biophys. Res. Commun. 62: 895.PubMedCrossRefGoogle Scholar
  52. Deman, J. J., Bruyneel, E. A., and Mareel, M. M., 1974, A study on the mechanism of intercellular adhesion. Effects of neuraminidase, calcium, and trypsin on the aggregation of suspended HeLa cells, J. Cell. Biol. 60: 641.PubMedCrossRefGoogle Scholar
  53. Deppert, W., Werchau, H., and Walter, G., 1974, Differentiation between intracellular and cell surface glycosyl transferases. Galactosyl transferase activity in intact cells and in cell homogenate, Proc. Natl. Acad. Sci. U.S. 71: 3065.CrossRefGoogle Scholar
  54. Dische, Z., 1965, Amino-sugar-containing compounds in mucuses and in mucous membranes, in: The Amino Sugars (E. A. Balazs and R. W. Jeanloz, eds.), Vol. IIA, pp. 115–140, Academic Press, New York.Google Scholar
  55. Drzeniek, R., and Gauhe, A., 1970, Differences in substrate specificity of myxovirus neuraminidases, Biochem. Biophys. Res. Commun. 38: 651.PubMedCrossRefGoogle Scholar
  56. Eylar, E. H., Madoff, M. A., Brady, O. V., and Oncley, J. L., 1962, The contribution of sialic acid to the surface charge of the erythrocyte, J. Biol. Chem. 237: 1992.PubMedGoogle Scholar
  57. Fazekas de St. Groth, S., 1949, Modification of virus receptors by metaperiodate; properties of 104-treated red-cells, Austr. J. Exp. Biol. Med. Sci. 27: 65.CrossRefGoogle Scholar
  58. Fisher, T. N., and Ginsberg, H. S., 1956a, The reaction of influenza viruses with guinea pig polymorphonuclear leucocytes. II. The reduction of white blood cell glycolysis by influenza viruses and receptor-destroying enzyme (RDE), Virology 2: 637.PubMedCrossRefGoogle Scholar
  59. Fisher, T. N., and Ginsberg, H. S., 1956b, The reaction of influenza viruses with guinea pig polymorphonuclear leucocytes. III. Studies on the mechanism by which influenza viruses inhibit phagocytosis, Virology 2: 656.PubMedCrossRefGoogle Scholar
  60. Forrester, J. A., Ambrose, E. J., and Stocker, M. G. P., 1964, Microelectrophoresis of normal and transformed clones of hamster kidney fibroblasts, Nature (Lond.) 201: 945.CrossRefGoogle Scholar
  61. Fresen, K. O., and Ubendorfer, A., 1973, Physicochemical membrane changes in Ehrlich ascites tumor cells infected with oncolytic influenza virus, Arch. Gesamte Virusforsch. 41: 267.PubMedCrossRefGoogle Scholar
  62. Friberg, S., 1972, Comparison of an immunoresistant and an immunosusceptible ascites subline from murine tumor TA3. I. Transplantability, morphology, and some physicochemical characteristics, J. Natl. Cancer Inst. 48: 1463.PubMedGoogle Scholar
  63. Friedenreich, V., 1930, The Thomsen Hemagglutination Phenomenon. Production of a Specific Receptor Quality in Red Cell Corpuscles by Bacterial Activity, Levin and Munksgaard, Copenhagen.Google Scholar
  64. Fuhrmann, G. F., Granzer, E., Kìbier, W., Rueff, F., and Ruhenstroth-Bauer, G., 1962, Neuraminsäurenbedingte Strukturunterschiede der Zellmembranen normaler und maligner Leberzellen, Z. Naturforsch. 17b: 610.Google Scholar
  65. Galili, U., and Schlesinger, M., 1974, The formation of stable E rosettes after neuraminidase treatment of either human peripheral blood lymphocytes or of sheep red blood cells, J. Immunol. 112: 1628.PubMedGoogle Scholar
  66. Gasic, G., and Gasic, T., 1963, Removal of PAS positive surface sugars in tumor cells by glycosidases, Proc. Soc. Exp. Biol. Med. 114: 660.PubMedGoogle Scholar
  67. Gasic, G. J., Gasic, T. B., and Stewart, C. C., 1968, Antimetastatic effects associated with platelet reduction, Proc. Natl. Acad. Sci. U.S. 61: 46.CrossRefGoogle Scholar
  68. Gesner, B. M., and Woodruff, J. J., 1969, Factors affecting the distribution of lymphocytes, in: Cellular Recognition (R. T. Smith and R. A. Good, eds.), pp. 79–90, Appleton-Century-Crofts, New York.Google Scholar
  69. Gielen, W., 1968, Vorkommen und biologische Bedeutung der Neuraminsäure, Naturwissenschaften 55: 104.PubMedCrossRefGoogle Scholar
  70. Glick, J. L., and Githens, S., III, 1965, The role of sialic acid in potassium transport of L1210 leukaemia cells, Nature (Lond.) 208: 88.CrossRefGoogle Scholar
  71. Glick, J. L., Goldberg, A. R., and Pardee, A. B., 1966, The role of sialic acid in the release of proteins from L1210 leukemia cells. Cancer Res. 26: 1774.PubMedGoogle Scholar
  72. Glick, M. C., 1974, Chemical components of surface membranes related to biological properties, in: Biology and Chemistry of Eucaryotic Cell Surface (E. Y. C. Lee and E. E. Smith, eds.), pp. 213–240, Academic Press, New York.Google Scholar
  73. Good, W., and Wood, J. E., 1971a, The hydrational effect of alkali metal and halide ions on the Rh-anti-Rh system, Immunology 90: 37.Google Scholar
  74. Good, W., and Wood, J. E., 1971b, The hydrational effect of alkaline-earth chlorides and selected non-electrolytes on the Rh-anti-Rh system, Immunology 21: 617.PubMedGoogle Scholar
  75. Good, W., and Wood, J. E., 1972, Hydrational aspects of A-anti-A and B-anti-B interactions, Immunology 23: 423.PubMedGoogle Scholar
  76. Gottschalk, A., 1958, General discussion, in: Chemistry and Biology of Mucopolysaccharides (G. E. W. Wolstenholme and M. O’Connor, eds.), pp. 306–313, Little Brown, Boston.Google Scholar
  77. Greenaway, P. J., and LeVine, D., 1973, Binding of N-acetyl-neuraminic acid by wheat germ agglutinin, Nature (Lond.) New Biol. 241: 191.CrossRefGoogle Scholar
  78. Greenwalt, T. J., and Steane, E. A., 1973a, Quantitative haemagglutination. 4. Effect of neuraminidase treatment on agglutination by blood group antibodies, Br. J. Haematol. 25: 207.PubMedCrossRefGoogle Scholar
  79. Greenwalt, T. J., and Steane, E. A., 1973b, Quantitative haemagglutination. 5. Influence of in vivo ageing and neuraminidase treatment on the M and N antigens of human red cells, Br. J. Haematol. 25: 217.PubMedCrossRefGoogle Scholar
  80. Greenwalt, T. J., and Steane, E. A., 1973c, Quantitative haemagglutination. 6. Relationship of sialic acid content of red cells and aggregation by polybrene, protamine and poly-L-lysine, Br. J. Haematol. 25: 227.PubMedCrossRefGoogle Scholar
  81. Grimes, W. J., 1973, Glycosyltransferase and sialic acid levels of normal and transformed cells, Biochemistry 12: 990.PubMedCrossRefGoogle Scholar
  82. Gröttum, K. A., and Jeremic, M., 1973, Neuraminidase injections in rabbits. Reduced platelet surface charge, aggregation and thrombocytopenia, Thromb. Diath. Haemorrh. 29: 461.PubMedGoogle Scholar
  83. Gröttum, K. A., and Solum, N. O., 1969, Congenital thrombocytopenia with giant platelets. A defect in the platelet membrane, Br. J. Haematol. 16: 277.PubMedCrossRefGoogle Scholar
  84. Grothaus, E. A., Flye, M. W., Yunis, E., and Amos, D. B., 1971, Human lymphocyte antigen reactivity modified by neuraminidase, Science 173: 542.PubMedCrossRefGoogle Scholar
  85. Gwatkin, R. B. L., Andersen, O. F., and Hutchinson, C. F., 1972, Capacitation of hamster spermatozoa in vitro: The role of cumulus components, J. Reprod. Fertil. 30: 389.PubMedCrossRefGoogle Scholar
  86. Hakomori, S.-I., 1975, Structures and organization of cell surface glycolipids. Dependency on cell growth and malignant transformation, Biochim. Biophys. Acta 417: 55.PubMedGoogle Scholar
  87. Hakomori, S.-I., and Murakami, W. T., 1968, Glycolipids of hamster fibroblasts and derived malignant transformed cell lines, Proc. Natl. Acad. Sci. U.S. 59: 254.CrossRefGoogle Scholar
  88. Haksar, A., Maudsley, D. V., Kimmel, G. L., Peron, F. G., Robidoux, W. R., Jr., and Gahnon, G., 1974, Adrenocorticotropin stimulation of cyclic adenosine 3′-5′-monophosphate formation in isolated rat adrenal cells. The role of membrane sialic acid, Biochim. Biophys. Acta 362: 356.PubMedCrossRefGoogle Scholar
  89. Haslam, R. J., 1967, Mechanisms of blood platelet aggregation, in: Physiology of Hemostasis and Thrombosis (S. A. Johnson and W. H. Seegers, eds.), pp. 88–112, C. C. Thomas, Springfield, Ill.Google Scholar
  90. Henle, W., Henle, G., Groupé, V., and Chambers, L. A., 1944, Studies on complement fixation with the viruses of influenza, J. Immunol. 48: 163.Google Scholar
  91. Hirst, G. K., 1941, The agglutination of red cells by allantoic fluid of chick embryos infected with influenza virus, Science 94: 22.PubMedCrossRefGoogle Scholar
  92. Hirst, G. K., 1942, Adsorption of influenza hemagglutinins and virus by red blood cells, J. Exp. Med. 76: 195.PubMedCrossRefGoogle Scholar
  93. Hirst, G. K., 1943, Adsorption of influenza virus on cells of the respiratory tract, J. Exp. Med. 78: 99.PubMedCrossRefGoogle Scholar
  94. Hirst, G. K., 1945, Annual Report of the Rockefeller Found, Int. Health Div., p. 50, quoted in Hirst (1948).Google Scholar
  95. Hirst, G. K., 1948, The nature of the virus receptors of red cells. I. Evidence on the chemical nature of the virus receptors of red cells and of the existence of a closely analogous substance in normal serum, J. Exp. Med. 87: 301.PubMedCrossRefGoogle Scholar
  96. Holland, J. F., St. Arneault, G., and Bekesi, G., 1972, Combined chemo-and immunotherapy of transplantable and spontaneous murine leukemia, Abstr. Am. Assoc. Cancer Res. 1972: 83.Google Scholar
  97. Hollenberg, M. D., and Cuatrecasas, P., 1975, Insulin: Interaction with membrane receptors and relationship to cyclic purine nucleotides and cell growth, Fed. Proc. 34: 1556.PubMedGoogle Scholar
  98. Hovig, T., 1965. The effect of various enzymes on the ultrastructure, aggregation and clot retraction ability of rabbit blood platelets, Thromb. Diath. Haemorrh. 13: 184.Google Scholar
  99. Huang, R. T. C., Rott, R., and Klenk, H. D., 1973, On the receptor of influenza viruses. 1. Artificial receptor for influenza virus, Z. Naturforsch. 28c: 342.Google Scholar
  100. Hughes, R. C., and Jeanloz, R. W., 1966, Sequential periodate oxidation of α1-acid glycoprotein, Biochemistry 5: 253.PubMedCrossRefGoogle Scholar
  101. Hughes, R. C., Sanford, B. H., and Jeanloz, R. W., 1972, Regeneration of the surface glycoproteins of a transplantable mouse tumor cell after treatment with neuraminidase, Proc. Natl. Acad. Sci. U.S. 69: 942.CrossRefGoogle Scholar
  102. Hughes, R. C., Palmer, P. D., and Sanford, B. H., 1973, Factors involved in the cytotoxicity of normal guinea pig serum for cells of murine tumor TA3 sublines treated with neuraminidase, J. Immunol. 111: 1071.PubMedGoogle Scholar
  103. Kalant, H., Mons, W., and Guttman, M., 1964, Sialic acid content of normal rat liver and of DAB-induced hepatomata, Can. J. Physiol. Pharmacol. 42: 25.PubMedCrossRefGoogle Scholar
  104. Kemp, R. B., 1968, Effect of the removal of cell surface sialic acids on cell aggregation in vitro, Nature (Lond.) 218: 1255.CrossRefGoogle Scholar
  105. Kemp, R. B., 1970, The effect of neuraminidase (3: 2: 1: 18) on the aggregation of cells dissociated from embryonic chick muscle tissue, J. Cell Sci. 6: 751.PubMedGoogle Scholar
  106. Khan, M. Y., and Zinneman, H. H., 1970, The role of sialic acid in hemagglutination, Am. J. Clin. Pathol. 54: 715.PubMedGoogle Scholar
  107. Klein, G., 1967, Tumor antigens, in: The Specificity of Cell Surfaces (B. D. Davis and L. Warren, eds.), pp. 165–180, Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  108. Klenk, E., 1958a, Neuraminic acid, in: Chemistry and Biology of Micropolysaccharides (G. E. W. Wolstenholme and M. O’Connor, eds.), pp. 296–305, Little Brown, Boston.Google Scholar
  109. Klenk, E., 1958a, General discussion, in: Chemistry and Biology of Mucopolysaccharides (G. E. W. Wolstenholme and M. O’Connor, eds.), pp. 306–313, Little Brown, Boston.Google Scholar
  110. Klenk, E., and Lempfrid, H., 1957, Über die Natur der Zellreceptoren für das Influenzavirus, Hoppe-Seyl. Z. 307: 278.CrossRefGoogle Scholar
  111. Klenk, E., and Stoffel, W., 1956, Zur Kenntnis der Zellreceptoren für das Influenzavirus. Über das Vorkommen von Neuraminsäure im Eiweiss des Erthrocytenstromas, Hoppe-Seyl. Z. 303: 78.CrossRefGoogle Scholar
  112. Kojima, K., and Maekawa, A., 1970, Difference in electrokinetic charge of cells between two cell types of ascites hepatoma after removal of sialic acid, Cancer Res. 30: 2858.PubMedGoogle Scholar
  113. Kojima, K., and Maekawa, A., 1972, A difference in the architecture of surface membrane between two cell types of rat ascites hepatoma, Cancer Res. 32: 847.PubMedGoogle Scholar
  114. Kolodny, G. M., 1972, Effect of various inhibitors on re-adhesion of trypsinized cells in culture, Exp. Cell Res. 70: 196.PubMedCrossRefGoogle Scholar
  115. Kraemer, P. M., 1966, Regeneration of sialic acid on the surface of Chinese hamster cells in culture. I. General characteristics of the replacement process, J. Cell Physiol. 68: 85.PubMedCrossRefGoogle Scholar
  116. Kraemer, P. M., 1967, Configuration change of surface sialic acid during mitosis, J. Cell Biol. 33: 197.PubMedCrossRefGoogle Scholar
  117. Kryzhanovskii, G. N., and Sakharova, O. P., 1972, Effect of neuraminidase on the protagon-tetanus toxin complex, Byull. Eksp. Biol. Med. 73: 36.Google Scholar
  118. Kryzhanovskii, G. N., Rozanov, A. Ya., and Bondarchuk, G. N., 1973, In vitrorelease of tetanotoxin, fixed by neurostructures, under the effect of neuraminidase, Byull. Eksp. Biol. Med. 76: 26.Google Scholar
  119. Lalezari, P., and Al-Mondhiry, H., 1973, Sialic acid deficiency of human red blood cells associated with persistent red cell, leucocyte, and platelet polyagglutinability, Br. J. Haematol. 25: 399.PubMedCrossRefGoogle Scholar
  120. Landsteiner, L., and Levine, P., 1928, On individual differences in human blood, J. Exp. Med. 47: 757.PubMedCrossRefGoogle Scholar
  121. Lee, A., 1968, Effect of neuraminidase on the phagocytosis of heterologous red cells by mouse peritoneal macrophages, Proc. Soc. Exp. Biol. Med. 128: 891.PubMedGoogle Scholar
  122. Lee, E. Y. C., and Smith, E. E. (eds.), 1974, Biology and Chemistry of Euearyotic Cell Surfaces, Academic Press, New York.Google Scholar
  123. LeVine, D., Kaplan, M. J., and Greenaway, P. J., 1972, The purification and characterization of wheat-germ agglutinin, Biochem. J. 129: 847.PubMedGoogle Scholar
  124. Levinson, B., Peper, D., and Belyavin, G., 1969, Substituted sialic acid prosthetic groups as determinants of viral hemagglutination, J. Virol. 3: 477.PubMedGoogle Scholar
  125. Liao, T.-H., Gallop, P. M., and Blumenfeld, O. O., 1973, Modification of sialyl residues of sialoglycoprotein(s) of the human erythrocyte surface, J. Biol. Chem. 248: 8247.PubMedGoogle Scholar
  126. Lisowska, E., and Duk, M., 1975a, Modification of amino groups of human-erythrocyte glycoproteins and the new concept on the structural basis of M and N blood-group specificity, Eur. J. Biochem. 54: 469.PubMedCrossRefGoogle Scholar
  127. Lisowska, E., and Duk, M., 1975b, Effect of modification of amino groups of human erythrocytes on M, N, and Nvg blood group specificities, Vox Sang. 28: 392.PubMedCrossRefGoogle Scholar
  128. Lloyd, C. W., and Cook, G. M. W., 1974, On the mechanism of the increased aggregation by neuraminidase of 16C malignant rat dermal fibroblasts in vitro, J. Cell Sci. 15: 575.PubMedGoogle Scholar
  129. Lowden, J. A., and Wolfe, L. S., 1964, Studies on brain gangliosides. IV. The effect of hypercapnia on gangliosides in vivo, Can. J. Biochem. 42: 1703.PubMedCrossRefGoogle Scholar
  130. Lukert, P. D., 1972, Chemical characterization of avian infectious bronchitis virus receptor sites, Am. J. Vet. Res. 33: 987.PubMedGoogle Scholar
  131. Madoff, M. A., Ebbe, S., and Baldini, M., 1964, Sialic acid of human blood platelets, J. Clin. Invest. 43: 870.PubMedCrossRefGoogle Scholar
  132. Manchee, R. J., and Taylor-Robinson, D., 1969, Utilization of neuraminic acid receptors by mycoplasmas, J. Bacteriol. 98: 914.PubMedGoogle Scholar
  133. Marchalonis, J. J., and Edelman, G. M., 1968, Isolation and characterization of a hemagglutinin from Limulus polyphemus, J. Mol. Biol. 32: 453.CrossRefGoogle Scholar
  134. McClelland, L., and Hare, R., 1941, The adsorption of influenza virus by red cells and a new in vitro method of measuring antibodies for influenza virus, Can. J. Publ. Health 32: 530.Google Scholar
  135. McCrea, J. F., 1954, Studies on influenza virus receptor substance and receptor-substance analogues. II. Isolation and purification of a mucoprotein receptor substance from human erythrocyte stroma treated with pentane, Yale J. Biol. Med. 26: 191.Google Scholar
  136. Mcllwain, H., 1960, Characterization of constituents of blood plasma and of the brain which restore excitability to isolated cerebral tissue, Biochem. J. 76: 16P.Google Scholar
  137. McQuiddy, P., and Lilien, J. E., 1971, Sialic acid and cell aggregation, J. Cell Sci. 9: 823.PubMedGoogle Scholar
  138. McQuiddy, P., and Lilien, J. E., 1973, The binding of exogenously added neuraminidase to cells and tissues in culture, Biochim. Biophys. Acta 291: 774.PubMedCrossRefGoogle Scholar
  139. Meindl, P., Bodo, G., Palese, P., Schulman, J., and Tuppy, H., 1974, Inhibition of neuraminidase activity by derivatives of 2-deoxy-2,3-dehydro-N-acetylneuraminic acid, Virology 58: 457.PubMedCrossRefGoogle Scholar
  140. Mellanby, J., and van Heyningen, W. E., 1965, Fixation of tetanus toxin by subcellular fractions of brain, J. Neurochem. 12: 77.PubMedCrossRefGoogle Scholar
  141. Mester, L., 1971, Role of sialoglycoproteins in platelet aggregation, in: Platelet Aggregation (J. Caen, ed.), pp. 131–135, Masson, Paris.Google Scholar
  142. Mester, L., Szabados, L., Born, G. V., and Michal, F., 1972, Changes in the aggregation of platelets enriched in sialic acid, Nature (Lond.) New Biol. 236: 213.Google Scholar
  143. Miller, D. K., Cooper, A. G., Brown, M. C., and Jeanloz, R. W., 1975, Reversible loss, in suspension culture, of a major cell-surface glycoprotein of the TA3-Ha mouse tumor, J. Natl. Cancer Inst. 55: 1249.PubMedGoogle Scholar
  144. Mora, P. T., Cumar, F. A., and Brady, R. O., 1971, A common biochemical change in S V40 and polyoma virus transformed mouse cells coupled to control of cell growth in culture, Virology 46: 60.PubMedCrossRefGoogle Scholar
  145. Morell, A. G., Irving, R. A., Sternlieb, I., Scheinberg, I. H., and Ashwell, G., 1968, Physical and chemical studies on ceruloplasmin. V. Metabolic studies on sialic acidfree ceruloplasmin in vivo, J. Biol. Chem. 243: 155.PubMedGoogle Scholar
  146. Morell, A. G., Gregoriadis, G., Scheinberg, I. H., Hickman, J., and Ashwell, G., 1971, The role of sialic acid in determining the survival of glycoproteins in the circulation, J. Biol. Chem. 246: 1461.PubMedGoogle Scholar
  147. Moscona, A. A., 1962, Analysis of cell recombinations in experimental synthesis of tissues in vitro, J. Cell Comp. Physiol. 60: Suppl. 1, 65.CrossRefGoogle Scholar
  148. Nathenson, S. G., Shimada, A., Yamane, K., Muramatsu, T., Cullen, S., Mann, D. L., Fahey, J. L., and Graff, R., 1970, Biochemical properties of papain-solubilized murine and human histocompatibility alloantigens, Fed. Proc. 29: 2026.PubMedGoogle Scholar
  149. Nicolson, G. L., 1974, The interactions of lectins with animal cell surfaces, Intern. Rev. Cytol. 39: 89.CrossRefGoogle Scholar
  150. Noseworthy, J., Jr., Korchak, H., and Karnovsky, M. L., 1972, Phagocytosis and the sialic acid of the surface of polymorphonuclear leukocytes, J. Cell Physiol. 79: 91.PubMedCrossRefGoogle Scholar
  151. Novogrodsky, A., and Katchalski, E., 1972, Membrane site modified on induction of the transformation of lymphocytes by periodate, Proc. Natl. Acad. Sci. U.S. 69: 3207.CrossRefGoogle Scholar
  152. Novogrodsky, A., and Katchalski, E., 1973a, Induction of lymphocyte transformation by sequential treatment with neuraminidase and galactose oxidase, Proc. Natl. Acad. Sci. U.S. 70: 1824.CrossRefGoogle Scholar
  153. Novogrodsky, A., and Katchalski, E., 1973b, Transformation of neuraminidase-treated lymphocytes by soybean agglutinin, Proc. Natl. Acad. Sci. U.S. 70: 2515.CrossRefGoogle Scholar
  154. Ohta, N., Pardee, A. B., McAuslan, B. R., and Burger, M. M., 1968, Sialic acid contents and controls of normal and malignant cells, Biochim. Biophys. Acta 158: 98.PubMedCrossRefGoogle Scholar
  155. Orr, C. W., and Roseman, S., 1969, Intercellular adhesion: I. A quantitative assay for measuring the rate of adhesion, J. Membrane Biol. 1: 109.CrossRefGoogle Scholar
  156. Palese, P., Schulman, J. L., Bodo, G., and Meindl, P., 1974a, Inhibition of influenza and parainfluenza virus replication in tissue culture by 2-deoxy-2,3-dehydro-N-trifluoroacetylneuraminic acid, Virology 59: 490.PubMedCrossRefGoogle Scholar
  157. Palese, P., Tobita, K., Ueda, M., and Compans, R. W., 1974b, Characterization of temperature sensitive influenza virus mutants defective in neuraminidase, Virology 61: 397.PubMedCrossRefGoogle Scholar
  158. Pardoe, G. I., and Uhlenbruck, G., 1970, Characteristics of antigenic determinants of intact cell surfaces, J. Med. Lab. Technol. 27: 249.PubMedGoogle Scholar
  159. Patel, A. A., and Srinivasa Rao, S., 1966, Subcellular fixation of tetanus toxin in susceptible and resistant species, Br. J. Pharmacol. 26: 740.Google Scholar
  160. Pricer, W. E., and Ashwell, G., 1971, The binding of desialylated glycoproteins by plasma membranes of rat liver, J. Biol. Chem. 246: 4825.PubMedGoogle Scholar
  161. Rapin, A. M. C., and Burger, M. M., 1974, Tumor cell surfaces: General alterations detected by agglutinins, Adv. Cancer Res. 20: 1.PubMedCrossRefGoogle Scholar
  162. Rios, A., and Simmons, R. L., 1973, Immunospecific regression of various syngeneic mouse tumors in response to neuraminidase-treated tumor cells, J. Natl. Cancer Inst. 51: 637.PubMedGoogle Scholar
  163. Rios, A., and Simmons, R. L., 1974, Active specific immunotherapy of minimal residual tumor: Excision plus neuraminidase-treated tumor cells, Intern. J. Cancer 13: 71.CrossRefGoogle Scholar
  164. Rogentine, G. N., Jr., and Plocinik, B. A., 1974, Carbohydrate inhibition studies of the naturally occurring human antibody to neuraminidase-treated human lymphocytes, J. Immunol. 113: 848.PubMedGoogle Scholar
  165. Roseman, S., 1970, The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion, Chem. Phys. Lipids 5: 270.PubMedCrossRefGoogle Scholar
  166. Roseman, S., 1974, Complex carbohydrate in intercellular adhesion, in: The Cell Surface in Development (A. A. Moscona, ed.), pp. 255–271, John Wiley and Sons, New York.Google Scholar
  167. Roseman, S., Rottmann, W., Walther, B., Öhman, R., and Umbreit, J., 1974, Measurement of cell-cell interactions, Methods Enzymol. 22: 597.CrossRefGoogle Scholar
  168. Rosenberg, S. A., and Einstein, A. B., Jr., 1972, Sialic acids on the plasma membrane of cultured human lymphoid cells. Chemical aspect and biosynthesis, J. Cell Biol. 53: 466.PubMedCrossRefGoogle Scholar
  169. Rosenberg, S. A., and Rogentine, G. N., Jr., 1972, Natural human antibodies to hidden membrane components, Nature (Lond.) New Biol. 239: 203.Google Scholar
  170. Rosenberg, S. A., and Schwarz, S., 1974, Murine autoantibodies to a cryptic membrane antigen: Possible explanation for neuraminidase-induced increase in cell immunogenicity, J. Natl. Cancer Inst. 52: 1151.PubMedGoogle Scholar
  171. Rosenberg, S. A., Plocinik, B. A., and Rogentine, G. N., Jr., 1972, Unmasking of human lymphoid cell heteroantigens by neuraminidase treatment, J. Natl. Cancer Inst. 48: 1271.PubMedGoogle Scholar
  172. Roth, S., 1968, Studies on intercellular adhesive selectivity, Dev. Biol. 18: 602.PubMedCrossRefGoogle Scholar
  173. Roth, S., 1973, A molecular model for cell interactions, Q. Rev. Biol. 48: 541.PubMedCrossRefGoogle Scholar
  174. Roth, S., McGuire, E. J., and Roseman, S., 1971, An assay for intercellular adhesive specificity, J. Cell Biol. 51: 525.PubMedCrossRefGoogle Scholar
  175. Rubin, H., Fernbach, T., and Ritz, N. D., 1970, Corrective effect of sialic acid on the clotting of factor VIII deficient blood, Thromb. Diath. Haemorrh. 24: 152.PubMedGoogle Scholar
  176. Runnström, J., Hagström, B. E., and Perlmann, P., 1959, Fertilization, in: The Cell, Vol. I (J. Brachet and A. E. Mirsky, eds.), pp. 327–397, Academic Press, New York.Google Scholar
  177. Sachtleben, P., Gsell, R., and Mehrishi, J. N., 1973, Neuraminidase and anti-neuraminidase serum: Effect on the cell surface properties, Vox Sang. 25: 519.PubMedCrossRefGoogle Scholar
  178. Sanderson, A. R., Cresswell, P., and Welsh, K. I., 1971, Involvement of carbohydrate in the immunochemical determinant area of HL-A substances, Nature (Lond.) New Biol. 230: 8.CrossRefGoogle Scholar
  179. Sanford, B. H., 1967, An alteration in tumor histocompatibility induced by neuraminidase, Transplantation 5: 1273.PubMedCrossRefGoogle Scholar
  180. Sanford, B. H., and Codington, J. F., 1971, Further studies on the effect of neuraminidase on tumor cell transplantability, Tissue Antigens 1: 153.PubMedCrossRefGoogle Scholar
  181. Sanford, B. H., Codington, J. F., Jeanloz, R. W., and Palmer, P. D., 1973, Transplantability and antigenicity of two sublines of the TA3 tumor, J. Immunol. 110: 1233.PubMedGoogle Scholar
  182. Schied, A., and Choppin, P. W., 1973, Isolation and purification of the envelope proteins of Newcastle Disease Virus, J. Virol. 11: 263.Google Scholar
  183. Schied, A., and Choppin, P. W., 1974, The hemagglutinating and neuraminidase protein of a paramyxovirus: Interaction with neuraminic acid in affinity chromatography, Virology 62: 125.CrossRefGoogle Scholar
  184. Sethi, K. K., and Brandis, H., 1972, In vitro cytotoxicity of normal serum factor(s) on neuraminidase-treated Ehrlich ascites cells, Z. Immun. Forsch. 143: 426.Google Scholar
  185. Sethi, K. K., and Brandis, H., 1973, Neuraminidase induced loss in transplantability of murine leukaemia 1210, induction of immunoprotection and the transfer of induced immunity to normal DBA/2 mice by serum and peritoneal cells, Br. J. Cancer 27: 106.PubMedCrossRefGoogle Scholar
  186. Sharon, N., and Lis, H., 1972, Lectins: Cell-agglutinating and sugar-specific proteins, Science 177: 949.PubMedCrossRefGoogle Scholar
  187. Simon-Reuss, I., Cook, G. M. V., Seaman, G. V. F., and Heard, D. H., 1964, Electrophoretic studies on some types of mammalian tissue cell, Cancer Res. 24: 2038.PubMedGoogle Scholar
  188. Simmons, R. L., and Rios, A., 1971, Immunotherapy of cancer: Immunospecific rejection of tumors in recipients of neuraminidase-treated tumor cells plus BCG, Science 174: 591.PubMedCrossRefGoogle Scholar
  189. Simmons, R. L., and Rios, A., 1972, Modification of immunogenicity in experimental immunotherapy and prophylaxis, in: Membranes and Viruses in Immunopathology (S. B. Day and R. A. Good, eds.), pp. 563–576, Academic Press, New York.Google Scholar
  190. Simmons, R. L., and Rios, A., 1973, Differential effect of neuraminidase on the immunogenicity of viral associated and private antigens of mammary carcinomas, J. Immunol. 111: 1820.PubMedGoogle Scholar
  191. Simmons, R. L., Rios, A., and Ray, P. K., 1970, Mechanism of neuraminidase induced antigen unmasking, Surg. Forum 21: 265.PubMedGoogle Scholar
  192. Simmons, R. L., Rios, A., Lundgren, G., Ray, P. K., McKhan, C. F., and Haywood, C. R., 1971a, Immunospecific regression of methylcholanthrene fibrosarcoma with the use of neuraminidase, Surgery 70: 38.PubMedGoogle Scholar
  193. Simmons, R. L., Rios, A., and Ray, P. K., 1971b, Effect of neuraminidase on growth of 3-methylcholanthrene-induced fibrosarcoma in normal and immunosuppressed syngeneic mice, J. Natl. Cancer Inst. 47: 1087.PubMedGoogle Scholar
  194. Simmons, R. L., Lepschultz, M. L., Rios, A., and Ray, P. K., 1971c, Failure of neuraminidase to unmask histocompatibility antigens on trophoblasts, Nature (Lond.) New Biol. 231: 111.Google Scholar
  195. Smets, L. A., and Broekhuysen-Davies, J., 1972, Shielding of antigens and concanavaline A agglutination sites by a surface coat of transplantable mouse lymphosarcoma cells, Eur. J. Cancer 8: 541.PubMedGoogle Scholar
  196. Smith, W. G., 1966, Release of ganglioside from guinea-pig lung tissue during anaphylaxis, Nature (Lond.) 209: 1251.CrossRefGoogle Scholar
  197. Sneath, P. H. A., and Lederberg, J., 1961, Inhibition by periodate of mating in Escherichiae coli K-12, Proc. Natl. Acad. Sci. U.S. 47: 86.CrossRefGoogle Scholar
  198. Sobeslavsky, O., Prescott, B., and Chanock, R. M., 1968, Adsorption of Mycoplasma pneumoniae to neuraminic acid receptors of various cells and possible role in virulence, J. Bacteriol. 96: 695.PubMedGoogle Scholar
  199. Springer, G. F., and Desai, P. R., 1974, Common precursors of human blood groups MN specificities, Biochem. Biophys. Res. Commun. 61: 470.PubMedCrossRefGoogle Scholar
  200. Springer, G. F., Tegtmeyer, H., and Huprikar, S. V., 1972, Anti-N reagents in elucidation of the genetical basis of human blood group MN specificities, Vox Sang. 22: 325.PubMedCrossRefGoogle Scholar
  201. Suttajit, M., and Winzler, R. J., 1971, Effect of modification of N-acetylneuraminic acid on the binding of glycoproteins to influenza virus and on susceptibility to cleavage by neuraminidase, J. Biol. Chem. 246: 3398.PubMedGoogle Scholar
  202. Tanigaki, N., and Pressman, D., 1974, The basic structure and the antigenic characteristics of HL-A antigens, Transplant. Rev. 21: 15.PubMedGoogle Scholar
  203. Thomsen, O., 1927, Ein vermehrungsfähiges Agens als Veränderer des isoagglutinatorischen Verhaltens der roten Blutkörperchen, eine bisher unbekannte Quelle der Fehlbestimmung, Z. Immun. Forsch. 52: 85.Google Scholar
  204. Tiffany, T. M., and Blough, H. A., 1971, Attachment of Myxoviruses to artificial membranes. Electron microscopic studies, Virology 44: 18.PubMedCrossRefGoogle Scholar
  205. Tsvetkova, I. V., and Lipkind, M. A., 1973, Studies on the role of myxovirus neuraminidase in virus-cell receptor interaction by means of direct determination of sialic acid split from cells. 3. One-step growth kinetics of accumulation of the sialic acid liberated from NDV-infected chick embryo cells, Arch. Gesamte Virusforsch. 42: 125.PubMedCrossRefGoogle Scholar
  206. Tuppy, H., and Gottschalk, A., 1972, The structure of sialic acids and their quantitation, in: Glycoproteins, Their Composition, Structure and Function (A. Gottschalk, ed.), pp. 403–449, Elsevier Publishing Co., Amsterdam.Google Scholar
  207. Tyler, A., 1947, An auto-antibody concept of cell structure, growth and differentiation, Growth 10(Suppl.): 7.Google Scholar
  208. Uhlenbruck, G., and Wintzer, G., 1970, Topochemical arrangement of neuraminic acid containing receptors within the cell membrane, in: Blood and Tissue Antigens (D. Aminoff, ed.), pp. 289–305, Academic Press, New York.Google Scholar
  209. Uhlenbruck, G., Pardoe, G. I., and Bird, G. W. G., 1969, On the specificity of lectins with a broad agglutination spectrum. II. Studies on the nature of the T-antigen and the specific receptors for the lectin of Arachis hypogaea, Z. Immun. Forsch. 138: 423.Google Scholar
  210. van Beek, W. P., Smets, L. A., and Emmelot, P., 1973, Increased sialic acid density in surface glycoprotein of transformed and malignant cells—A general phenomenon? Cancer Res. 33: 2913.PubMedGoogle Scholar
  211. van Heyningen, W. E., 1959, Tentative identification of the tetanus toxin receptors in nervous tissue, J. Gen. Microbiol. 20: 310.Google Scholar
  212. van Heyningen, W. E., 1963, The fixation of tetanus toxin by ganglioside, Biochem. Pharmacol. 12: 437.CrossRefGoogle Scholar
  213. van Heyningen, W. E., and Miller, P. A., 1961, The fixation of tetanus toxin by ganglioside, J. Gen. Microbiol. 24: 107.Google Scholar
  214. Vermylen, J., Donati, M. B., de Gateano, G., and Verstraete, M., 1973, Aggregation of human platelets by bovine or human factor VIII: Role of carbohydrate side chains, Nature (London) New Biol. 244: 167.CrossRefGoogle Scholar
  215. Vermylen, J., de Gateano, G., Donati, M. B., and Verstraete, M., 1974, Plateletaggregating activity in neuraminidase-treated human cryoprecipitates: Its correlation with Factor-VIII-related antigen, Br. J. Haematol. 96: 645.CrossRefGoogle Scholar
  216. Verwey, E. J. W., and Overbeck, J. T. G., 1968, Theory of the Stability of Lyophobic Colloids, Elsevier Publishing Co., Amsterdam.Google Scholar
  217. Vicker, M. G., and Edwards, J. G., 1972, The effect of neuraminidase on the aggregation of BHK21 cells and BHK21 cells transformed by polyoma virus, J. Cell Sci. 10: 759.PubMedGoogle Scholar
  218. Voigtmann, R., and Uhlenbruck, G., 1970, Untersuchungen über den Mechanismus der Erythrozytenaggregation, Thromb. Diath. Haemorrh. 24: 530.PubMedGoogle Scholar
  219. Wallach, D. H. F., and Eylar, E. H., 1961, Sialic acid in the cellular membranes of Ehrlich ascites-carcinoma cells, Biochim. Biophys. Acta 52: 594.PubMedCrossRefGoogle Scholar
  220. Wallach, D. H. F., and de Perez Esandi, M. V., 1964, Sialic acid and the electrophoretic mobility of three tumor cell types, Biochim. Biophys. Acta 83: 363.PubMedGoogle Scholar
  221. Walther, B. T., Öhman, R., and Roseman, S., 1973, A quantitative assay for intercellular adhesion, Proc. Natl. Acad. Sci. U.S. 70: 1569.CrossRefGoogle Scholar
  222. Warren, L., and Glick, M. C., 1968, Membranes of animal cells. II. The metabolism and turnover of the surface membrane, J. Cell Biol. 37: 729.PubMedCrossRefGoogle Scholar
  223. Warren, L., Fuhrer, J. P., and Buck, C. A., 1972, Surface glycoproteins of normal and transformed cells: A difference determined by sialic acid and a growth-dependent sialyl transferase, Proc. Natl. Acad. Sci. U.S. 69: 1838.CrossRefGoogle Scholar
  224. Watkins, E., Jr., Ogata, Y., Anderson, L. L., Watkins, E., III, and Waters, M. F., 1971, Activation of host lymphocytes cultured with cancer cells treated with neuraminidase, Nature (Lond.) New Biol. 231: 83.Google Scholar
  225. Watkins, W. M., 1967, Blood-group substances, in: The Specificity of Cell Surfaces (B. D. Davis and L. Warren, eds.), pp. 257–279, Prentice-Hall, Englewood Cliffs, N. J.Google Scholar
  226. Weiss, L., 1961, Sialic acid as a structural component of some mammalian tissue cell surfaces, Nature (Lond.) 191: 1108.CrossRefGoogle Scholar
  227. Weiss, L., 1963, Studies on cellular adhesion in tissue-culture. V. Some effects of enzymes on cell-detachment, Exp. Cell Res. 30: 509.PubMedCrossRefGoogle Scholar
  228. Weiss, L., 1964, Cellular locomotive pressure in relation to initial cell contacts, J. Theor. Biol. 6: 275.PubMedCrossRefGoogle Scholar
  229. Weiss, L., 1965, Studies on cell deformability. Effect of surface charge, J. Cell Biol. 26: 735.PubMedCrossRefGoogle Scholar
  230. Weiss, L., 1967, The Cell Periphery, Metastasis and Other Contact Phenomena, North-Holland, Amsterdam.Google Scholar
  231. Weiss, L., 1968, Studies on cellular adhesion in tissue culture. IX. Electrophoretic mobility and contact phenomena, Exp. Cell Res. 51: 609.PubMedCrossRefGoogle Scholar
  232. Weiss, L., and Cudney, T. L., 1971, Some effects of neuraminidase on the in vitrointeractions between spleen and mastocytoma (P815) cells, Int. J. Cancer 7: 187.PubMedCrossRefGoogle Scholar
  233. Weiss, L., and Hauschka, T. S., 1970, Malignancy, electrophoretic mobilities and sialic acids at the electrokinetic surface of TA3 cells, Int. J. Cancer 6: 270.PubMedCrossRefGoogle Scholar
  234. Weiss, L., and Levinson, C., 1969, Cell electrophoretic mobility and cationic flux, J. Cell Physiol. 73: 31.PubMedCrossRefGoogle Scholar
  235. Weiss, L., and Mayhew, E., 1967, Ribonucleic acid within the cellular peripheral zone and the binding of calcium to ionogenic sites, J. Cell Physiol. 69: 281.PubMedCrossRefGoogle Scholar
  236. Weiss, P., 1947, Problem of specificity in growth and development, Yale J. Biol. Med. 19: 235.PubMedGoogle Scholar
  237. Wesemann, W., and Zilliken, F., 1968, Rezeptoren der Neurotransmitter. IV. Serotoninrezeptor und Neuraminsäurestoffwechsel der glatten Muskulatur, Hoppe-Seyl. Z. 349: 823.CrossRefGoogle Scholar
  238. Woodruff, J. J., 1974, Role of lymphocyte surface determinants in lymph node homing, Cell. Immunol. 13: 378.PubMedCrossRefGoogle Scholar
  239. Woodruff, J. J., and Gesner, B. M., 1969, The effect of neuraminidase on the fate of transfused lymphocytes, J. Exp. Med. 129: 551.PubMedCrossRefGoogle Scholar
  240. Woolley, D. W., and Gommi, B. W., 1964, Serotonin receptor: V, Selective destruction by neuraminidase plus EDTA and reactivation with tissue lipids, Nature (Lond.) 202: 1074.CrossRefGoogle Scholar
  241. Woolley, D. W., and Gommi, B. W., 1965, Serotonin receptors, VII. Activities of various pure gangliosides as receptors, Proc. Natl. Acad. Sci. U.S. 53: 959.CrossRefGoogle Scholar
  242. Yamakawa, T., Matsumoto, M., Suzuki, S., and Iida, T., 1956, The chemistry of the lipids of post-hemolytic residue or stroma of erythrocytes. VI. Sphingolipids of erythrocytes with respect to blood group activities. J. Biochem. (Tokyo) 43: 41.Google Scholar
  243. Yogeeswaran, G., and Hakomori, S., 1975, Cell contact-dependent ganglioside changes in mouse 3T3 fibroblasts and a suppressed sialidase activity on cell contact, Biochemistry 14: 2151.PubMedCrossRefGoogle Scholar
  244. Zakstelskaya, Y., Molibog, E. V., Yakhno, M. A., Evstigneeva, N. A., Isachenko, V. A., Privalova, I. M., and Khorlin, A. Ya., 1972, Use of synthetic inhibitors of neuraminidase and hemagglutinin for the study of the functional role of active subunits of membranes of myxo-and paramyxoviruses, Vopr. Virusol. 17: 223.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Roger W. Jeanloz
    • 1
  • John F. Codington
    • 1
  1. 1.Laboratory for Carbohydrate Research, Departments of Biological Chemistry and MedicineHarvard Medical School, and Massachusetts General HospitalBostonUSA

Personalised recommendations