Catabolism of Sialyl Compounds in Nature

  • Kunihiko Suzuki


While sialic acid exists in free form, or as a part of relatively small heterosaccharide molecules, the major portion of naturally occurring sialic acid is present as a constituent of either glycoproteins or gangliosides.* Distribution of these sialic-acid-containing compounds in nature and their biosynthesis, are dealt with in Chapters 2 and 4. As for any other chemical constituents of biological systems, sialic acids exist in a metabolically dynamic state which, naturally, is the net result of constant biosynthesis and degradation.


Sialic Acid Carbohydrate Chain Aryl Sulfatase Sialic Acid Residue Residual Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Apffel, C. A., and Peters, J. H., 1970, Regulation of antigenic expression, J. Theor. Biol. 26: 47–59.PubMedGoogle Scholar
  2. Aronson, N. N., and de Duve, C., 1968, Digestive activity of lysosomes. II. The digestion of macromolecular carbohydrates by extracts of rat liver lysosomes, J. Biol. Chem. 243: 4564–4573.PubMedGoogle Scholar
  3. Autio, S., Norden, N. E., Öckerman, P. A., Riekkinen, P., Rapola, J., and Louhimo, T., 1973, Mannosidosis: Clinical, fine structural and biochemical findings in three cases, Acta Paediat. Scand. 62: 555–565.PubMedGoogle Scholar
  4. Bach, G., and Suzuki, K., 1975, Heterogeneity of human hepatic N-acetyl-β-D-hexosaminidase A activity toward natural glycosphingolipid substrates, J. Biol. Chem. 250: 1328–1332.PubMedGoogle Scholar
  5. Baggiolini, M., Hirsch, J. G., and de Duve, C., 1969, Resolution of granules from rabbit heterophil leukocytes into distinct populations by zonal sedimentation, J. Cell Biol. 40: 529–541.PubMedGoogle Scholar
  6. Bhavanandan, V. P., Buddecke, E., Carubelli, R., and Gottschalk, A., 1964, The complete enzymic degradation of glycopeptides containing O-seryl and O-threonyl linked carbohydrate, Biochem. Biophys. Res. Commun. 16: 353–357.PubMedGoogle Scholar
  7. Bowen, D. M., and Radin, N. S., 1968a, Purification of cerebroside galactosidase from rat brain, Biochim. Biophys. Acta 152: 587–598.PubMedGoogle Scholar
  8. Bowen, D. M., and Radin, N. S., 1968b, Properties of cerebroside galactosidase, Biochim. Biophys. Acta 152: 599–610.PubMedGoogle Scholar
  9. Bowen, D. M., and Radin, N. S., 1969, Cerebroside galactosidase: A method for determination and a comparison with other lysosomal enzymes in developing rat brain, J. Neurochem. 16: 501–511.PubMedGoogle Scholar
  10. Bowers, W. E., and de Duve, C., 1967, Lysosomes in lymphoid tissue II. Intracellular distribution of acid hydrolases, J. Cell Biol. 32: 339–348.PubMedGoogle Scholar
  11. Brady, R. O., Kanfer, J., and Shapiro, D., 1965, The metabolism of glucocerebroside. I. Purification and properties of glucocerebroside-cleaving enzyme from spleen tissue, J. Biol. Chem. 240: 39–43.PubMedGoogle Scholar
  12. Brown, D. M., and Michael, A. F., 1969, Effect of neuraminidase on the accumulation of alpha-aminoisobutyric acid in HeLa cells, Proc. Soc. Exp. Biol. Med. 131: 568–570.PubMedGoogle Scholar
  13. Bruni, C., and Porter, K. R., 1965, The fine structure of the parenchymal cell of the normal rat liver. I. General Observations, Am. J. Path. 46: 691–755.PubMedGoogle Scholar
  14. Callahan, J., and Gerrie, J., 1974, Substrate specificity of a rabbit β-galactosidase, Trans. Am. Soc. Neurochem. 5: 129.Google Scholar
  15. Callahan, J. W., and Wolfe, L. S., 1970, Isolation and characterization of keratan sulfates from the liver of a patient with GM1-gangliosidosis type I, Biochim. Biophys. Acta 215: 527–543.PubMedGoogle Scholar
  16. Carubelli, R., Bhavanadan, V. P., and Gottschalk, A., 1965, Studies on glycoproteins XI. The O-glycosidic linkage of N-acetylgalactosamine to seryl and threonyl residues in ovine submaxillary gland glycoprotein, Biochim. Biophys. Acta 101: 67–82.PubMedGoogle Scholar
  17. Conchie, J., and Hay, A. J., 1963, Mammalian glycosidases 4. The intracellular localization of β-galactosidase, α-mannosidase, β-N-acetylglucosaminidase and α-L-fucosi-dase in mammalian tissues, Biochem. J. 87: 354–361.PubMedGoogle Scholar
  18. Cuatrecasas, P., 1973, Gangliosides and membrane receptors for cholera toxin, Biochemistry 12: 3558–3566.PubMedGoogle Scholar
  19. Currie, G. A., and Bagshawe, K. D., 1969, Tumor specific immunogenecity of methylcholanthrene-induced sarcoma cells after incubation in neuraminidase, Brit. J. Cancer 23: 141–149.PubMedGoogle Scholar
  20. Dawson, G., and Stein, A. O., 1970, Lactosylceramidosis: Catabolic enzyme defect of glycosphingolipid metabolism, Science 170: 556–558.PubMedGoogle Scholar
  21. de Duve, C., 1969, The lysosome in retrospect, in: Lysosomes in Biology and Pathology (J. T. Dingle and H. B. Fell, eds.), Vol. 1, pp. 3–40, North-Holland Publishing Co., Amsterdam.Google Scholar
  22. de Duve, C., and Wattiaux, R., 1966, Functions of lysosomes. Ann. Rev. Physiol. 28: 435–492.Google Scholar
  23. de Duve, C., Pressman, B. C., Gianetto, R., Wattiaux, R., and Appelmans, F., 1955, Tissue fractionation studies, 6. Intracellular distribution patterns of enzymes in rat liver tissue. Biochem. J. 60: 604–617.Google Scholar
  24. Durand, P., Borrone, C., and Delia Cella, G., 1969, Fucosidosis. J. Pediat. 75: 665–674.PubMedGoogle Scholar
  25. Dziembor, E., Gryskiewicz, J., and Ostrowski, W., 1970, The role of neuraminic acid in the stability and enzymic activity of acid phosphatase of the human prostate gland, Experientia 26: 947–948.PubMedGoogle Scholar
  26. Ebert, W., and Metz, J., 1972, Modifications of N-acetylneuraminic acid and their influence on the antigen activity of erythrocyte glycoproteins, Europ. J. Biochem. 27: 470–472.PubMedGoogle Scholar
  27. Eylar, E. H., 1965, On the biological role of glycoproteins, J. Theor. Biol. 10: 89–113.Google Scholar
  28. Faillard, H., and Schauer, R., 1972, Glycoproteins as lubricants, protective agents, carriers, structural proteins and as participants in other functions, in: Glycoproteins, Their Composition, Structure and Function (A. Gottschlak, ed.) pp. 1246–1267, Elsevier Publishing Co., Amsterdam.Google Scholar
  29. Farquhar, M. G., 1969, Lysosome function in regulating secretion: Disposal of secretory granules in cells of the anterior pituitary gland, in: Lysosomes in Biology and Pathology (J. T. Dingle and H. B. Fell, eds.), Vol. II, pp. 462–483, North-Holland Publishing Co., Amsterdam.Google Scholar
  30. Gatt, S., 1966a, Enzymatic hydrolysis of sphingolipids. Hydrolysis of ceramide glucoside by an enzyme from ox brain, Biochem. J. 101: 687–691.PubMedGoogle Scholar
  31. Gatt, S., 1966b, Enzymatic hydrolysis of sphingolipids. I. Hydrolysis and Synthesis of ceramides by an enzyme from rat brain, J. Biol. Chem. 241: 3724–3730.PubMedGoogle Scholar
  32. Gatt, S., 1967, Enzymatic hydrolysis of sphingolipids. V. Hydrolysis of monosialoganglioside and hexosylceramides by rat brain β-galactosidase, Biochim. Biophys. Acta 137: 192–195.PubMedGoogle Scholar
  33. Gatt, S., and Rapport, M. M., 1966a, Isolation of β-galactosidase and β-glucosidase from brain, Biochim. Biophys. Acta 113: 567–576.PubMedGoogle Scholar
  34. Gatt, S., and Rapport, M. M., 1966b, Enzymic hydrolysis of sphingolipids. Hydrolysis of ceramide lactoside by an enzyme from rat brain, Biochem. J. 101: 680–686.PubMedGoogle Scholar
  35. Glick, J. L., and Githens, S., 1965, Role of sialic acid in potassium transport of L-1210 leukaemia cells, Nature 208: 88.PubMedGoogle Scholar
  36. Goldstone, A., Konecny, P., and Koenig, H., 1971, Lysosomal hydrolases: Conversion of acidic to basic forms by neuraminidase, FEBS Lett. 13: 68–72.PubMedGoogle Scholar
  37. Gordon, G. B., Miller, L. R., and Bensch, K. G., 1965, Studies on the intracellular digestive process in mammalian tissue culture cells, J. Cell Biol. 25: Suppl. 41–55.Google Scholar
  38. Gottschalk, A., 1960, Sialic acids: Their molecular structure and biological function in mucoproteins, Bull. Soc. Chim. Biol. 42: 1387–1393.PubMedGoogle Scholar
  39. Graham, E. R. B., and Gottschalk, A., 1960, Studies on mucoproteins. I. The structure of the prosthetic group of ovine submaxillary gland mucoprotein, Biochim. Biophys. Acta 38: 513–524.PubMedGoogle Scholar
  40. Gregoriadis, G., Morell, A. G., Sternlieb, I., and Scheinberg, I. H., 1970, Catabolism of desialylated ceruloplasmin in the liver, J. Biol. Chem. 245: 5833–5837.PubMedGoogle Scholar
  41. Ho, M. W., 1973, Identity of “acid” β-glucosidase and glucocerebrosidase in human spleen, Biochem. J. 136: 721–729.PubMedGoogle Scholar
  42. Ho, M. W., and Light, N. D., 1973, Glucocerebrosidase: Reconstitution from macromole-cular components depends on acidic phospholipids, Biochem. J. 136: 821–823.PubMedGoogle Scholar
  43. Ho, M. W., Cheetham, P., and Robinson, D., 1973, Hydrolysis of GM1-ganglioside by human liver β-galactosidase isoenzymes, Biochem. J. 136: 351–359.PubMedGoogle Scholar
  44. Horvat, A., and Touster, O., 1968, On the lysosomal occurrence and the properties of the neuraminidase of rat liver and of Enrich ascites tumor cells, J. Biol. Chem. 243: 4380–4390.PubMedGoogle Scholar
  45. Hovig, T., 1965, The effect of various enzymes on the ultrastructure, aggregation and clot retraction ability of rabbit blood platelets, Thromb. Diath. Haemorrhag. 13: 84–113.Google Scholar
  46. Ishizuka, I., and Wiegandt, H., 1972. An isomer of trisialoganglioside and the structure of tetra-and pentasialogangliosides from fish brain, Biochim. Biophys. Acta 260: 279–289.PubMedGoogle Scholar
  47. Kemp, R. B., 1970, The effect of neuraminidase on the aggregation of cells dissociated from embryonic chick muscle tissue, J. Cell Sci. 6: 751–766.PubMedGoogle Scholar
  48. Kolodny, E. H., Kanfer, J. N., Quirk, J. M., and Brady, R. O., 1971, Properties of a particle-bound enzyme from rat intestine that cleaves sialic acid from Tay-Sachs ganglioside, J. Biol. Chem. 246: 1426–1431.PubMedGoogle Scholar
  49. Kuhn, R., and Wiegandt, H., 1964, Weitere Ganglioside aus Menschenhirn, Z. Naturforsch. 198: 256–257.Google Scholar
  50. Lapetina, E. G., Soto, E. F., and de Robertis, E., 1967, Gangliosides and acetylcholinesterase in isolated membranes of the rat brain cortex, Biochim. Biophys. Acta 135: 33–43.PubMedGoogle Scholar
  51. Ledeen, R. W., Yu, R. K., and Eng, L. F., 1973, Gangliosides of human myelin: Sialosyl-galactosylceramide (G7) as a major component, J. Neurochem. 21: 829–839.PubMedGoogle Scholar
  52. Lee, A., 1968, Effect of neuramindase on the phagocytosis of heterologous red cells by mouse peritoneal macrophages, Proc. Soc. Exp. Biol. Med. 128: 891–894.PubMedGoogle Scholar
  53. Li, Y.-T., Mansson, J.-E., Vanier, M.-T., and Svennerholm, L., 1973a, Structure of the major glucosamine-containing ganglioside of human tissues, J. Biol. Chem. 248: 2634–2636.PubMedGoogle Scholar
  54. Li, Y.-T., Mazzotta, M. Y., Wan, C.-C., Orth, R., and Li, S.-C., 1973b, Hydrolysis of Tay-Sachs ganglioside by β-hexosaminidase A of human liver and urine, J. Biol. Chem. 248: 7512–7515.PubMedGoogle Scholar
  55. Loeb, H., Tondeur, M., Jonniaux, G., Mockel-Pohl, S., and Vamos-Hurwitz, E., 1969, Biochemical and ultrastructural studies in a case of mucopolysaccharidosis “F” (fucosidosis), Helv. Paediat. Acta 24: 519–537.PubMedGoogle Scholar
  56. Lowy, P. H., Keighley, G., Borsook, H., 1959, Inactivation of erythropoietin by neuraminidase and by mild substitution reactions, Nature 185: 102–103.Google Scholar
  57. Mahadevan, S., and Tappel, A. L., 1967a, Arylamidase of rat liver and kidney, J. Biol. Chem. 242: 2369–2374.PubMedGoogle Scholar
  58. Mahadevan, S., and Tappel, A. L., 1967b, β-Aspartylglucosamine amido hydrolase of rat liver and kidney, J. Biol. Chem. 242: 4568–4576.PubMedGoogle Scholar
  59. Marcus, A. J., Ullman, H. L., and Saifer, L. B., 1972, Studies on human platelet gangliosides, J. Clin. Invest. 51: 2602–2612.PubMedGoogle Scholar
  60. Masson, P. K., and Lundblad, A., 1974, Mannosidosis: Detection of the disease and of heterozygotes using serum and leukocytes, Biochem. Biophys. Res. Commun. 56: 296–303.Google Scholar
  61. MacBrinn, M. C., Okada, S., Ho, M. W., Hu, C. C., and O’Brien, J. S., 1969, Generalized gangliosidosis: Impaired cleavage of galactose from a mucopolysaccharide and a glycoprotein, Science 163: 946–947.PubMedGoogle Scholar
  62. Miyatake, T., and Suzuki, K., 1972a, Galactosylsphingosine galactosyl hydrolase: Partial purification and properties of the enzyme in rat brain, J. Biol. Chem. 247: 5398–5403.PubMedGoogle Scholar
  63. Miyatake, T., and Suzuki, K., 1972b, Globoid cell leukodystrophy: Additional deficiency of psychosine galactosidase, Biochem. Biophys. Res. Commun. 48: 538–543.Google Scholar
  64. Miyatake, T., and Suzuki, K., 1974a, Glycosphingolipid β-galactosidases in rat brain: Properties and standard assay procedures of the enzymes in whole homogenate, Biochim. Biophys. Acta 337: 333–342.PubMedGoogle Scholar
  65. Miyatake, T., and Suzuki, K., 1974b, Galactosylsphingosine galactosyl hydrolase in rat brain: Probable identity with galactosylceramide galactosyl hydrolase, J. Neurochem. 22: 231–237.PubMedGoogle Scholar
  66. Miyatake, T., and Suzuki, K., 1975, Partial purification and characterization of β-galactosidase from rat brain hydrolyzing glycosphingolipids, J. Biol. Chem. 250: 585–592.PubMedGoogle Scholar
  67. Morgan, I. G., Reith, M., Marinari, U., Breckenridge, W. C., and Gombos, G., 1972, The isolation and characterization of synaptosomal plasma membranes, in: Glycolipids, Glycoproteins, and Mucopolysaccharides of the Nervous System (V. Zambotti, G. Tettamanti, and M. Arrigoni, eds.), pp. 209–228, Plenum Press, New York.Google Scholar
  68. Morell, A. G., Irvine, R. A., Sternlieb, I., Scheinberg, I. H., and Ashwell, G., 1968, Physical and chemical studies on ceruloplasmin V. Metabolic studies on sialic acidfree ceruloplasmin in vivo, J. Biol. Chem. 243: 155–159.PubMedGoogle Scholar
  69. Morell, A. G., Gregoriadis, G., Scheinberg, I. H., Hickman, J., and Ashwell, G., 1971, The role of sialic acid in determining the survival of glycoproteins in the circulation, J. Biol. Chem. 246: 1461–1467.PubMedGoogle Scholar
  70. Moss, D. W., 1969, Biochemical studies on phosphohydrolase isoenzymes. Ann. N.Y. Acad. Sci., 166: 641–652.PubMedGoogle Scholar
  71. Murphy, J. V., and Craig, L., 1972, Neuraminidase induced changes in white blood cell hexosaminidase A., Clin. Chim. Acta 42: 267–272.Google Scholar
  72. Murphy, J. V., and Craig, L., 1974, Effect of human cerebral neuraminidase on hexosaminidase A, Clin. Chim. Acta 51: 67–73.PubMedGoogle Scholar
  73. Norden, A. G. W., and O’Brien, J. S., 1973, Ganglioside GM1 β-galactosidase: Studies in human liver and brain, Arch. Biochem. Biophys. 159: 383–392.PubMedGoogle Scholar
  74. Norden, N. E., Öckerman, P. A., and Szabo, L., 1973, Urinary mannose in mannosidosis, J. Pediat. 82: 686–688.PubMedGoogle Scholar
  75. Norden, N. E., Lundblad, A., Svensson, S., and Autio, S., 1974, Characterization of two mannose-containing oligosaccharides isolated from the urine of patients with mannosidosis, Biochemistry 13: 871–874.PubMedGoogle Scholar
  76. Novikoff, A. B., 1973, Lysosomes: A personal account, in: Lysosomes and Storage Diseases (H. G. Hers and F. van Hoof, eds.), pp. 1–41, Academic Press, New York.Google Scholar
  77. Novikoff, A. B., Beaufay, H., and de Duve, C., 1956, Electron microscopy of lysosomerich fractions from rat liver, J. Biophys. Biochem. Cytol. 2, Suppl.: 179–184.PubMedGoogle Scholar
  78. Öckerman, P. A., 1967, A generalized storage disorder resembling Hurler’s syndrome, Lancet 11: 239–241.Google Scholar
  79. Öckerman, P. A., 1969, Mannosidosis: Isolation of oligosaccharide storage material from brain, J. Pediat. 75: 360–373.PubMedGoogle Scholar
  80. Öckerman, P. A., 1973, Mannosidosis, in: Lysosomes and Storage Diseases (H. G. Hers and F. van Hoof, eds.), pp. 292–304, Academic Press, New York.Google Scholar
  81. Öhman, R., Rosenberg, A., and Svennerholm, L., 1970, Human brain sialidase, Biochemistry 9: 3774–3782.PubMedGoogle Scholar
  82. Okada, S., and O’Brien, J. S., 1968, Generalized gangliosidosis: Beta-galactosidase deficiency, Science 160: 1002–1004.PubMedGoogle Scholar
  83. Palade, G. E., 1965, The endoplasmic reticulum, J. Biophys. Biochem. Cytol. 2, Suppl.: 85–98.Google Scholar
  84. Pelletier, G., and Novikoff, A. B., 1972, Localization of phosphatase activities in the rat anterior pituitary gland, J. Histochem. Cytochem. 20: 1–12.PubMedGoogle Scholar
  85. Pentchev, P. G., Brady, R. O., Hibbert, S. R., Gal, A. E., and Shapiro, D., 1973, Isolation and characterization of glucocerebrosidase from human placental tissue, J. Biol. Chem. 248: 5256–5261.PubMedGoogle Scholar
  86. Pierce, N. F., 1973, Differential inhibitory effects of cholera toxoids and ganglioside on the enterotoxins of Vibrio cholerae and Escherichia coli, J. Exp. Med. 137: 1009–1023.PubMedGoogle Scholar
  87. Porter, M. T., Fluharty, A. L., and Kihara, H., 1971, Correction of abnormal cerebroside sulfate metabolism in cultured metachromatic leukodystrophy fibroblasts, Science 172: 1263–1265.PubMedGoogle Scholar
  88. Pricer, W. E., and Ashwell, G., 1971, The binding of desialylated glycoproteins by plasma membranes of rat liver, J. Biol. Chem. 246: 4825–4833.PubMedGoogle Scholar
  89. Radin, N. S., Hof, L., Bradley, R. M., and Brady, R. O., 1969, Lactosylceramide galactosidase: Comparison with other sphingolipid hydrolases in developing rat brain, Brain Res. 14: 497–505.PubMedGoogle Scholar
  90. Robinson, D., and Stirling, J. L., 1968, N-acetyl-β-glucosaminidase in human spleen, Biochem. J. 107: 321–327.PubMedGoogle Scholar
  91. Sandhoff, K., and Wässle, W., 1971, Anreicherung und Charakterisierung zweier Formen der menschlichen N-Acetyl-β-D-Hexosaminidase, Z. Physiol. Chem. 352: 1119–1133.Google Scholar
  92. Sandhoff, K., Pilz, H., and Jatzkewitz, H., 1964, Über den enzymatischen Abbau von N-acetylneuraminsaurenfreien Gangliosidresten (Ceramidoligosacchariden), Z. Physiol. Chem. 338: 281–293.Google Scholar
  93. Sandhoff, K., Harzer, K., Wässle, W., and Jatzkewitz, H., 1971, Enzyme alterations and lipid storage in three variants of Tay-Sachs disease, J. Neurochem. 18: 2469–2489.PubMedGoogle Scholar
  94. Saraswathi, S., and Bachhawat, B. K., 1968, Role of neuraminic acid in the heterogeneity of alkaline phosphatase in sheep brain, Biochem. J. 107: 185–190.Google Scholar
  95. Sellinger, O. Z., Beaufay, H., Jacques, P., Doyen, A., and de Duve, C., 1960, Tissue fractionation studies, 15. Intracellular distribution and properties of β-N-acetylglucosaminidase and β-galactosidase in rat liver, Biochem. J. 74: 450–456.PubMedGoogle Scholar
  96. Siddiqui, B., and McCluer, R. H., 1968, Lipid component of sialosylgalactosylceramide of human brain, J. Lipid Res. 9: 366–370.PubMedGoogle Scholar
  97. Simpson, L. L., and Rapport, M. M., 1971, Ganglioside inactivation of botulinum toxin, J. Neurochem. 18: 1341–1343.PubMedGoogle Scholar
  98. Sloan, H. R., Uhlendorf, B. W., Jacobson, C. B., and Frederickson, D. S., 1971, β-Galactosidase in tissue culture derived from human skin and bone marrow: Enzyme defect in GM1-gangliosidosis, Pediat. Res. 3: 532–537.Google Scholar
  99. Smith, R. E., and Farquhar, M. G., 1966, Lysosome function in the regulation of the secretory process in cells of the anterior pituitary gland, J. Cell Biol. 31: 319–347.PubMedGoogle Scholar
  100. Snyder, P. D., Jr., Krivit, W., and Sweeley, C. C., 1972, Generalized accumulation of neutral glycosphingolipids with GM-ganglioside accumulation in the brain, J. Lipid Res. 13: 128–136.PubMedGoogle Scholar
  101. Srivastava, S. K., and Beutler, E., 1974, Studies on human β-D-N-acetylhexosaminidases III. Biochemical genetics of Tay-Sachs and Sandhoffs diseases, J. Biol. Chem. 249: 2054–2057.PubMedGoogle Scholar
  102. Srivastava, S. K., Awasthi, Y. C., Yoshida, A., and Beutler, E., 1974a, Studies on human β-D-N-acetylhexosaminidases. I. Purification and properties, J. Biol. Chem. 249: 2043–2048.PubMedGoogle Scholar
  103. Srivastava, S. K., Yoshida, A., Swasthi, Y. C., and Beutler, E., 1974b, Studies on human β-D-N-acetylhexosaminidases. II. Kinetic and structural properties, J. Biol. Chem. 249: 2049–2053.PubMedGoogle Scholar
  104. Straus, W., 1967, Lysosomes, phagosomes and related particles, in: Enzyme Cytology (D. B. Roodyn, ed.), pp. 239–319, Academic Press, New York.Google Scholar
  105. Suzuki, K., 1968, Cerebral GM1-gangliosidosis: Chemical pathology of visceral organs, Science 159: 1471–1472.PubMedGoogle Scholar
  106. Suzuki, K., and Suzuki, Y., 1970, Globoid cell leukodystrophy (Krabbe’s disease); Deficiency of galactocerebroside β-galactosidase. Proc. Natl. Acad. Sci. U.S. 66: 302–309.Google Scholar
  107. Suzuki, Y., and Suzuki, K., 1974a, Glycosphingolipid β-galactosidases I. Standard assay procedures and characterization by electrofocusing and gel filtration of the enzymes in normal human liver, J. Biol. Chem. 249: 2098–2104.PubMedGoogle Scholar
  108. Suzuki, Y., and Suzuki, K., 1974b. Glycophingolipid β-galactosidases. II. Electrofocusing characterization of the enzymes in human globoid cell leukodystrophy (Krabbe’s disease), J. Biol. Chem. 249: 2105–2108.PubMedGoogle Scholar
  109. Suzuki, Y., and Suzuki, K., 1974c, Glycosphingolipid β-galactosidases. IV. Electrofocusing characterization 1n GM1-gangliosidosis, J. Biol. Chem. 249: 2113–2117.PubMedGoogle Scholar
  110. Suzuki, Y., Suzuki, K., and Kamoshita, S., 1969, Chemical pathology of GM1-gangliosidosis (generalized gangliosidosis), J. Neuropath. Exp. Neurol. 28: 25–73.PubMedGoogle Scholar
  111. Svennerholm, L., 1963, Chromatographic separation of human brain gangliosides, J. Neurochem. 10: 612–623.Google Scholar
  112. Taha, B. H., and Carubelli, R., 1967, Mammalian neuraminidase: Intracellular distribution and changes of enzyme activity during lactation, Arch. Biochem. Biophys. 119: 55–61PubMedGoogle Scholar
  113. Tallman, J. F., and Brady, R. O., 1972, The catabolism of Tay-Sachs ganglioside in rat brain lysosomes, J. Biol. Chem. 247: 7570–7575.PubMedGoogle Scholar
  114. Tallman, J. F., Jr., Brady, R. O., and Suzuki, K., 1971, Enzymic activities associated with membranous cytoplasmic bodies and isolated brain lysosomes, J. Neurochem. 18: 1775–1777.PubMedGoogle Scholar
  115. Tallman, J. F., Brady, R. O., Quirk, J. M., Villalba, M., and Gal, A. E., 1974, Isolation and relationship of human hexosaminidases, J. Biol. Chem. 249: 3489–3499.PubMedGoogle Scholar
  116. Tanaka, H., and Suzuki, K., 1975, Lactosylceramide β-galactosidase in human sphingolipidoses: Evidence for two genetically distinct enzymes, J. Biol. Chem. 250: 2324–2332.PubMedGoogle Scholar
  117. Uhlenbruck, G., and Gielen, W., 1970, Immunobiologie der Neuraminsäure: ein Beitrag zur Antigenität der Hirntumoren, Fortschr. Neurol.-Psych. Grenzg. 38: 202–218.Google Scholar
  118. van den Hamer, C. J. A., Morell, A. G., Scheinberg, I. H., Hickman, J., and Ashwell, G., 1970, Physical and chemical studies on ceruloplasmin IX. The role of galactosyl residues in the clearance of ceruloplasmin from the circulation, J. Biol. Chem. 245: 4397–4402.Google Scholar
  119. van Heyningen, S., 1974, Cholera toxin: Interaction of subunits with ganglioside GM1, Science 183: 656–657.Google Scholar
  120. van Heyningen, W. E., 1959, Tentative identification of the tetanus toxin receptor in nervous tissue, J. Gen. Microbiol. 20: 310–320.Google Scholar
  121. van Heyningen, W. E., and Miller, P. A., 1961, The fixation of tetanus toxin by ganglioside J. Gen. Microbiol. 24: 107–119.Google Scholar
  122. van Hoof, F., 1973, Fucosidosis, in: Lysosomes and Storage Diseases (H. G. Hers and F. van Hoof, eds.), pp. 277–290, Academic Press, New York.Google Scholar
  123. van Hoof, F., and Hers, H. G., 1968, The abnormalities of lysosomal enzymes in mucopolysaccharidoses, Europ. J. Biochem. 7: 34–44.PubMedGoogle Scholar
  124. Weiss, L., 1961, Sialic acid as a structural component of some mammalian cell surfaces, Nature 191: 1108–1109.PubMedGoogle Scholar
  125. Weiss, L., 1965, Studies on cell deformability I. Effect of surface charge, J. Cell Biol. 26: 735–739.PubMedGoogle Scholar
  126. Wenger, D. A., Sattler, M., and Markey, S. P., 1973, Deficiency of monogalactosyl diglyceride β-galactosidase activity in Krabbe’s disease, Biochem. Biophys. Res. Commun. 53: 680–685.PubMedGoogle Scholar
  127. Wenger, D. A., Sattler, M., and Hiatt, W., 1974, Globoid cell leukodystrophy: Deficiency of lactosylceramide β-galactosidase, Proc. Natl. Acad. Sci. U.S. 71: 854–857.Google Scholar
  128. Wesemann, W., and Zilliken, F., 1968, Rezeptoren der Neurotransmitter, IV. Serotoninrezeptor und Neuraminsäure Stoffwechsel der glatten Muskulatur. Z. Physiol. Chem. 349: 823–830.Google Scholar
  129. Whitten, W. K., 1948, Inactivation of gonadotrophins II. Inactivation of pituitary and chorionic gonadotrophins by influenza virus and receptor-destroying enzyme, Austr. J. Sci. Res. B 1: 388–390.Google Scholar
  130. Wiegandt, H., 1966, Ganglioside, Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 57: 190–222.Google Scholar
  131. Wiegandt, H., 1967, The subcellular localization of gangliosides in the brain, J. Neurochem. 14: 671–674.PubMedGoogle Scholar
  132. Wiegandt, H., and Bücking, H. W., 1970, Carbohydrate components of extraneural gangliosides from bovine and human spleen, and bovine kidney. Europ. J. Biochem. 15: 287–292.PubMedGoogle Scholar
  133. Winkert, J. W., and Gordon, A. S., 1960, Enzymic actions on the human urinary erythropoietic-stimulating factor, Biochim. Biophys. Acta 42: 170–171.PubMedGoogle Scholar
  134. Woodruff, J. J., and Gesner, B. M., 1969, The effect of neuraminidase on the fate of transfused lymphocytes, J. Exp. Med. 129: 551–567.PubMedGoogle Scholar
  135. Wooley, D. W., and Gommi, B. W., 1965, Serotonin receptors, VII. Activities of various pure gangliosides as the receptors. Proc. Natl. Acad. Sci. 53: 959–963.Google Scholar
  136. Yavin, E., and Gatt, S., 1969, Enzymatic hydrolysis of sphingolipids. VIII. Further purification and properties of rat brain ceramidase. Biochemistry 8: 1692–1698.PubMedGoogle Scholar
  137. Yu, R. K., and Ledeen, R. W., 1972, Gangliosides of human, bovine and rabbit plasma. J. Lipid Res. 13: 680–686.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Kunihiko Suzuki
    • 1
  1. 1.The Saul R. Korey Department of Neurology, Department of Neuroscience, and the Rose F. Kennedy Center for Research in Mental Retardation and Human DevelopmentAlbert Einstein College of MedicineBronxUSA

Personalised recommendations