Advertisement

Anabolic Reactions Involving Sialic Acids

  • Edward John McGuire

Abstract

The sialic acids are a family of ubiquitous aminosugars found in some bacteria and invertebrates, and in all vertebrate tissues. They are normally found as nonreducing termini of complex heteropolymers such as glycoproteins, glycopeptide hormones, and glycolipids. The chemistry and structural features of these compounds are described in Chapter 1 of this volume.

Keywords

Sialic Acid Submaxillary Gland Acceptor Molecule Neuraminic Acid Galactosyl Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, A., and Kent, P. W., 1968, Studies on the enzymatic N-acylation of amino sugars in the sheep colonic mucosa, Biochem. J. 107: 589–598.PubMedGoogle Scholar
  2. Aminoff, D., Dodyk, F., and Roseman, S., 1963, Enzymatic synthesis of colominic acid, J. Biol. Chem. 238: pc1177–pc1178.Google Scholar
  3. Baig, M. M., and Aminoff, D., 1972, Glycoproteins and blood group activity; oligosaccharides of serologically inactive hog submaxillary glycoproteins, J. Biol. Chem. 247: 6111–6118.PubMedGoogle Scholar
  4. Bartholomew, B. A., and Jourdian, G. W., 1966, V. Colostrum sialyltransferases, in: Methods in Enzymology, Vol. VIII (E. F. Neufeld and V. Ginsburg, eds.), pp. 368–372, Academic Press, New York.Google Scholar
  5. Bartholomew, B. A., Jourdian, G. W., and Roseman, S., 1973, The sialic acids XV. Transfer of sialic acid to glycoproteins by a sialytransferase from colostrum, J. Biol. Chem. 248: 5751–5762.PubMedGoogle Scholar
  6. Bates, C. J., Adams, W. R., and Handschumacher, R. E., 1966, Control of the formation of uridine diphospho-N-acetylhexosamine and glycoprotein synthesis in rat liver, J. Biol. Chem. 241: 1705–1712.PubMedGoogle Scholar
  7. Becker, C. E., and Day, D. G., 1953, Utilization of glucosome and the synthesis of glucosamine in the rat, J. Biol. Chem. 201: 795–801.PubMedGoogle Scholar
  8. Blacklow, R. S., and Warren, L., 1962, Biosynthesis of sialic acids by Neisseria meningitidis, J. Biol. Chem. 237: 3520–3526.PubMedGoogle Scholar
  9. Blix, G., 1936, Über die Kohlenhydrat-Gruppen des Submaxillarismucins, Hoppe-Seyl. Z. 240: 43–54.CrossRefGoogle Scholar
  10. Blumenthal, H. J., Horowitz, S. T., Hemerline, A., and Roseman, S., 1955, Biosynthesis of glucosamine and glucosamine polymers by molds, Bacteriol. Proc. 137–137.Google Scholar
  11. Bosmann, H. B., 1971, Platelet adhesiveness and aggregation: The collagen: Glycosyl, polypeptide: N-acetylgalactosaminyl and glycoprotein galactosyl transferases of human platelets, Biochem. Biophys. Res. Commun. 43: 1118–1124.PubMedCrossRefGoogle Scholar
  12. Bosmann, H. B., 1972, Cell surface glocosyl transferases and acceptors in normal and RNA-and DNA-virus transformed fibroblasts, Biochem. Biophys. Res. Commun. 48: 523–529.PubMedCrossRefGoogle Scholar
  13. Brown, D. H., 1953, Action of phosphoglucomutase on D-glucosamine-6-phosphate, J. Biol. Chem. 204: 877–889.PubMedGoogle Scholar
  14. Brown, D. H., 1955, The D-glucosamine-6-phosphate N-acetylase of yeast, Biochim. Biophys. Acta 16: 429–431.PubMedCrossRefGoogle Scholar
  15. Brunetti, P., Jourdian, G. W., and Roseman, S., 1962, The sialic acids III. Distribution and properties of animal N-acetylneuraminic aldolase, J. Biol. Chem. 237: 2447–2453.PubMedGoogle Scholar
  16. Burnet, F. M., 1948, Mucins and mucoids in relation to influenza virus action. III. Inhibition of virus haemagglutination by glandular mucins, Aust. J. Exp. Biol. Med. Sci. 26: 371–329.PubMedCrossRefGoogle Scholar
  17. Cabib, E., Leloir, L. F., and Cardini, C. E., 1953, Uridine diphosphate acetylglucosa-mine, J. Biol. Chem. 203: 1055–1070.PubMedGoogle Scholar
  18. Cardini, C. E., and Leloir, L. F., 1957, Enzymatic formation of acetylgalactosamine, J. Biol. Chem. 225: 317–324.PubMedGoogle Scholar
  19. Carlson, D. M., 1966, Phosphoacetylglucosamine mutase from pig submaxillary gland, in: Methods in Enzymology, Vol. VIII (E. F. Neufeld and V. Ginsburg, eds.), pp. 179–182, Academic Press, New York.Google Scholar
  20. Carlson, D. M., 1968, Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucin, J. Biol. Chem. 243: 616–626.PubMedGoogle Scholar
  21. Carlson, D. M., McGuire, E. J., Jourdian, G. W., and Roseman, S., 1964, Submaxillary gland sialyltransferases, Fed. Proc. 23: 380.Google Scholar
  22. Carlson, D. M., Jourdian, G. W., and Roseman, S., 1973a, The sialic acids XIV. Synthesis of sialyl-lactose by a sialyltransferase from rat mammary gland, J. Biol. Chem. 248: 5742–5750.PubMedGoogle Scholar
  23. Carlson, D. M., McGuire, E. J., Jourdian, G. W., and Roseman, S., 1973b, The sialic acids XVI. Isolation of a mucin sialyltransferase from sheep submaxillary gland, J. Biol. Chem. 248: 5763–5773.PubMedGoogle Scholar
  24. Castellani, A. A., and Zambotti, V., 1956, Enzymatic formation of hexosamine in epiphyseal cartilage homogenate, Nature 178: 313–314.PubMedCrossRefGoogle Scholar
  25. Chou, T. C., and Soodak, M., 1952, The acetylation of D-glucosamine by pigeon liver extracts, J. Biol. Chem. 196: 105–109.PubMedGoogle Scholar
  26. Clark, J. S., and Pasternak, C. A., 1962, The regulation of aminosugar metabolism in Bacillus subtillus, Biochem. J. 84: 185–191.Google Scholar
  27. Comb, D. G., and Roseman, S., 1958a, Glucosamine metabolism IV. Glucosamine-6-phosphate deaminase, J. Biol. Chem. 232: 807–827.PubMedGoogle Scholar
  28. Comb, D. G., and Roseman, S., 1958b, Enzymic synthesis of N-acetyl-D-mannosamine, Biochim. Biophys. Acta 29: 653–654.PubMedCrossRefGoogle Scholar
  29. Comb, D. G., and Roseman, S., 1958c, Composition and enzymatic synthesis of N-acetylneuraminic acid (sialic acid), J. Am. Chem. Soc. 80: 497–499.CrossRefGoogle Scholar
  30. Comb, D. G., and Roseman, S., 1960, The sialic acids I. The structure and enzymatic synthesis of N-acetylneuraminic acid, J. Biol. Chem. 235: 2529–2537.PubMedGoogle Scholar
  31. Davidson, E. A., Blumenthal, H. J., and Roseman, S., 1957, Glucosamine metabolism II. Studies on glucosamine-6-phosphate N-acetylase, J. Biol. Chem. 226: 125–133.PubMedGoogle Scholar
  32. Eylar, E. H., 1965, On the biological role of glycoproteins, J. Theor. Biol. 10: 89–113.CrossRefGoogle Scholar
  33. Ghosh, S., and Roseman, S., 1961, Enzymatic phosphorylation of N-acetyl-D-mannosamine, Proc. Natl. Acad. Sci. U.S. 47: 955–958.CrossRefGoogle Scholar
  34. Ghosh, S., and Roseman, S., 1965a, The sialic acids N-acyl-D-glucosamine 6-phosphate 2-epimerase, J. Biol. Chem. 140: 1525–1530.Google Scholar
  35. Ghosh, S., and Roseman, S., 1965b, The sialic acids IV. N-Acyl-D-glucosamine 6-phosphate 2-epimerase, J. Biol. Chem. 240: 1531–1536.PubMedGoogle Scholar
  36. Ghosh, S., Blumenthal, H. J., Davidson, E., and Roseman, S., 1969, Glucosamine metabolism V. Enzymatic synthesis of glucosamine-6-phosphate. J. Biol. Chem. 235: 1265–1273.Google Scholar
  37. Glaser, L., and Brown, D. H., 1955, The enzymatic synthesis in vitro of hyaluronic acid chains, Proc. Natl. Acad. Sci. U.S. 41: 253–260.CrossRefGoogle Scholar
  38. Gottschalk, A., 1972, Historical introduction, in: Glycoproteins, Their Composition, Structure and Functions, Part A (A. Gottschalk, ed.), pp. 1–23, Elsevier, Publishing Co. New York.Google Scholar
  39. Gottschalk, A., and Lind, P. G., 1949, Product of the interaction between influenza virus enzyme and ovomucin, Nature (Lond.), 164: 232–233.CrossRefGoogle Scholar
  40. Grimes, W. J., and Robbins, P. W., 1972, Virus control of the synthesis of glucosidic linkages—glycoprotein and glycolipid sialic acid transferases from normal and SV40 transformed Balb/c cells, in: Biochemistry of the Glycosidic Linkage (R. Piras and H. G. Pontis, eds.), pp. 113–134, Academic Press, New York.Google Scholar
  41. Hansen, R. G., Albrecht, G. J., Bass, S. T., and Seifert, L. L., 1966a, UDP-glucose pyrophosphorylase (crystalline) from liver, in: Methods in Enzymology, Vol. VIII (E. F. Neufeld and V. Ginsburg, eds.), pp. 248–253, Academic Press, New York.Google Scholar
  42. Hansen, R. G., Verachten, H., Rodriguez, P., and Bass, S. T., 1966b, CDP-hexose pyrophosphorylase from liver, in: Methods in Enzymology, Vol. VIII (E. F. Neufeld and V. Ginsburg, eds.), pp. 269–275, Academic Press, New York.Google Scholar
  43. Heimer, R., and Meyer, K., 1956, Studies on sialic acid of submaxillary mucoid, Proc. Natl. Acad. U.S. 42: 728–734.CrossRefGoogle Scholar
  44. Hirst, G. K., 1941, Agglutination of red cells by allantoic fluid of chick embryos infected with influenza virus, Science 94: 22–23.PubMedCrossRefGoogle Scholar
  45. Hudgin, R. L., and Schachter, H., 1971, Porcine sugar nucleotide: glycoprotein glycosyltransferases I. Blood serum and liver sialyltransferase, Can. J. Biochem. 49: 829–837.PubMedCrossRefGoogle Scholar
  46. Hudgin, R. L., and Schachter, H., 1972, Evidence for two CMP-N-acetylneuraminic acidrlactose sialyltransferases in rat, procine, bovine, and human liver, Can. J. Biochem. 50: 1024–1028.PubMedCrossRefGoogle Scholar
  47. Hurlbert, R. B., and Potter, V. R., 1954, The conversion of orotic acid-6-C14 to uridine nucleotides, J. Biol. Chem. 209: 1–21.PubMedGoogle Scholar
  48. Jamieson, G. A., Urban, C. L., and Barber, A. J., 1971, Enzymatic basis for plateletrcollagen adhesion as the primary step in haemostasis, Nat. New Biol. 234: 5–7.PubMedGoogle Scholar
  49. Jourdian, G. W., Carlson, D. M., and Roseman, S., 1963, The enzymatic synthesis of sialyl-lactose, Biochem. Biophys. Res. Commun. 10: 352–358.CrossRefGoogle Scholar
  50. Jourdian, G. W., Swanson, A. L., Watson, D., and Roseman, S., 1964, Isolation of sialic acid 9-phosphatase from human erythrocytes, J. Biol. Chem. 239: pc2714–pc2715.PubMedGoogle Scholar
  51. Kaufman, B., and Basu, S., 1966, Embryonic chick brain sialyl-transferases, in: Methods in Enzymology, Vol. VIII (E. F. Neufeld and V. Ginsburg, eds.), pp. 365–368, Academic Press, New York.Google Scholar
  52. Kaufman, B., Basu, S., and Roseman, S., 1966, Studies on the biosynthesis of gangliosides, in: Proceedings of the Third International Symposium on the Cerebral Sphingo-lipidoses (S. M. Aronson and B. W. Volk, eds.), pp. 193–213, Pergamon Press, New York.Google Scholar
  53. Kaufman, B., Basu, S., and Roseman, S., 1968, Enzymatic synthesis of disialogangliosides from monosialogangliosides by sialyltransferases from embryonic chick brain, J. Biol. Chem. 243: 5804–5807.PubMedGoogle Scholar
  54. Kean, E. L., 1970, Nuclear cytidine 5′-monophosphate synthetase, J. Biol. Chem. 245: 2301–2308.PubMedGoogle Scholar
  55. Kean, E. L., and Roseman, S., 1966, The sialic acids X. Purification and properties of cytidine 5′-monophosphosialic acid synthetase, J. Biol. Chem. 241: 5643.PubMedGoogle Scholar
  56. Keenan, T. W., Morré, D. J., and Basu, S., 1974, Ganglioside biosynthesis: Concentration of glycosphingolipid glycosyltransferases in golgi apparatus from rat liver, J. Biol. Chem. 249: 310–315.PubMedGoogle Scholar
  57. Kizer, D. H., and McCoy, T. A., 1959, The synthesis of hexosamines in tumor homogenates, Cancer Res. 19: 307–310.PubMedGoogle Scholar
  58. Klenk, E., 1941, Neuraminsäure, das Spaltprodukt eines neuen gehirnlipoids, Z. Physiol. Chem. 268: 50–58.CrossRefGoogle Scholar
  59. Kornberg, A., 1950, Reversible enzymatic synthesis of diphosphopyridine nucleotide and inorganic pyrophosphate, J. Biol. Chem. 182: 779–793.Google Scholar
  60. Kornfeld, R., 1967, Studies on L-glutamine: D-fructose 6-phosphate amidotransferase I. Feedback inhibition by uridine diphosphate-N-acetylglucosamine, J. Biol. Chem. 242: 3135–3141.PubMedGoogle Scholar
  61. Kornfeld, S., Kornfeld, R., Neufeld, E., and O’Brien, P. J., 1964, The feedback control of sugar nucleotide biosynthesis in liver, Proc. Natl. Acad. Sci. U.S. 52: 371–379.CrossRefGoogle Scholar
  62. Kuhn, R., and Brossmer, R., 1958, Die Konstitution der Lactaminsäurelactose; α-Ketosidase-Wirkung von Viren der Influenza-Gruppe, Angew. Chem. 70: 25–26.CrossRefGoogle Scholar
  63. Kundig, W., Ghosh, S., and Roseman, S., 1966, The sialic acids VII. N-acyl-D-mannosamine kinase from rat liver, J. Biol. Chem. 241: 5619–5626.PubMedGoogle Scholar
  64. Kundig, F. D., Aminoff, D., and Roseman, S., 1971, The sialic acids XII. Synthesis of colominic acid by a sialyltransferase from Escherichia coli K-235, J. Biol. Chem. 246: 2543–2550.PubMedGoogle Scholar
  65. Lehrs, H., 1930, Ueber, Gruppenspezifische Eigenschaften des menschlichen Speichels, Z. Immunitätsforschung 66: 175–192.Google Scholar
  66. Leloir, L. F., and Cardini, C. E., 1953, The biosynthesis of glucosamine, Biochim. Biophys. Acta. 12: 15–22.PubMedCrossRefGoogle Scholar
  67. Leloir, L. F., and Cardini, C. E., 1956, Enzymes acting on glucosamine phosphates, Biochim. Biophys. Acta 20: 33–42.PubMedCrossRefGoogle Scholar
  68. Lowther, D. A., and Rodgers, H. J., 1953, The relation of glutamine to the synthesis of hyaluronate or hyaluronate-like substances by Streptococci, Biochem. J. 53: XXXIX.PubMedGoogle Scholar
  69. Lowther, D. A., and Rodgers, H. J., 1955, Biosynthesis of hyaluronate, Nature 175: 435.PubMedCrossRefGoogle Scholar
  70. Lowther, D. A., and Rodgers, H. J., 1956, The role of glutamine in the biosynthesis of hyaluronate by Streptococcal suspensions, Biochem. J. 62: 304–314.PubMedGoogle Scholar
  71. Maley, F., and Lardy, H. A., 1956, Formation of UDPGla and related compounds by the soluble fraction of liver, Science 124: 1207–1208.PubMedCrossRefGoogle Scholar
  72. Maley, F., Maley, G. F., and Lardy, H. A., 1956, The synthesis of α-D-glucosamine-1-phosphate and N-acetyl-α-D-glucosamine-1-phosphate. Enzymatic formation of uridine diphosphoglucosamine, J. Am. Chem. Soc. 78: 5303–5307.CrossRefGoogle Scholar
  73. Marshall, R. D., 1972, Glycoproteins, in: Annual Review of Biochemistry, Vol. 41 (E. E. Snell, ed.), pp. 673–702, Annual Reviews, Palo Alto.Google Scholar
  74. McClelland, L., and Hare, R., 1941, Adsorption of influenza virus by red cells and a new in vitro method of measuring antibodies for influenza virus, Can. J. Pub. Health 32: 530–538.Google Scholar
  75. McGuire, E. J., 1970, Biosynthesis of submaxillary mucins, in: Blood and Tissue Antigens (David Aminoff, ed.), pp. 461–478, Academic Press, New York.Google Scholar
  76. Miller, L. L., and Bale, W. F., 1954, Synthesis of all plasma protein fractions except gamma globulins by the liver. The use of zone electrophoresis and lysine-∈-C14 to define the plasma proteins synthesized by the isolated perfused liver, J. Exp. Med. 99: 125–132.PubMedCrossRefGoogle Scholar
  77. Miller, L. L., Bly, C. G., Watson, M. L., and Bale, W. F., 1951, The dominant role of the liver in plasma protein synthesis. A direct study of the isolated perfused rat liver with the aid of lysine-∈-C14, J. Exp. Med. 94: 431–453.PubMedCrossRefGoogle Scholar
  78. Morell, A. G., Irvine, R. A., Sternlieb, I. H., and Ashwell, G., 1968, Physical and chemical studies on ceruloplasmin V. Metabolic studies on sialic acid-free ceruloplasmin in vivo, J. Biol. Chem. 243: 155–159.PubMedGoogle Scholar
  79. Morell, A. G., Gregoridadis, G., Scheinberg, I. H., Hickman, J., and Ashwell, G., 1971, The role of sialic acid in determining the survival of glycoproteins in the circulation, J. Biol. Chem. 246: 1461–1467.PubMedGoogle Scholar
  80. Morré, D. J., and Mollenhauer, H. H., 1964, Isolation of the golgi apparatus from plant cells, J. Cell Biol. 23: 295–305.PubMedCrossRefGoogle Scholar
  81. Morré, D. J., Hamilton, R. L., Mollenhauer, H. H., Mahley, R. W., Cunningham, W. P., Cheetham, R. D., and Lequire, V. S., 1970, Isolation of a golgi apparatus-rich fraction from rat liver. I. Method and morphology, J. Cell Biol. 44: 484–491.PubMedCrossRefGoogle Scholar
  82. O’Brien, P. J., Canady, M. R., Hall, C. W., and Neufield, E. F., 1966, Tranfer of N-acetylneuraminic acid to in complete glycoproteins associated with microsomes, Biochim. Biophys. Acta 117: 331–341.PubMedCrossRefGoogle Scholar
  83. Park, J. T., and Strominger, J. L., 1957, Mode of action of penicillin, Science, 125: 99–101.PubMedCrossRefGoogle Scholar
  84. Pogell, B. M., and Gryder, R. M., 1957, Enzymatic synthesis of glucosamine-6-phosphate in rat liver, J. Biol. Chem. 228: 701–712.PubMedGoogle Scholar
  85. Pogell, B. M., and Gryder, R. M., 1969, Further studies on glucosamine-6-phosphate synthesis by rat liver, J. Biol. Chem. 235: 558–562.Google Scholar
  86. Pricer, W. E., Jr., and Ashwell, G., 1971, The binding of desialylated glycoproteins by plasma membranes of rat liver, J. Biol. Chem. 246: 4825–4833.PubMedGoogle Scholar
  87. Putkonen, T., 1930, Über die blutgruppen-spezifizität des fruchtwas sers, Acta Path. Microbiol. Scand. 5: 64–65.Google Scholar
  88. Reissig, J. L., 1956, Phosphoacetylglucosamine mutase of Neurospora, J. Biol. Chem. 219: 753–767.PubMedGoogle Scholar
  89. Rieder, S. V., and Buchanan, J. M., 1958, Studies on the biological formation of glucosamine in vivo. I. Origin of the carbon chain, J. Biol. Chem. 232: 951–957.PubMedGoogle Scholar
  90. Roseman, S., 1962a, Metabolism of sialic acids and D-mannosamine, Fed. Proc. 21: 1075–1083.PubMedGoogle Scholar
  91. Roseman, S., 1962b, Enzymatic synthesis of cytidine 5′-monophosphosialic acids, Proc. Natl. Acad. Sci. U.S. 48: 437–441.CrossRefGoogle Scholar
  92. Roseman, S., 1968, Biochemistry of glycoproteins and related substances, in: Proceedings of the Fourth International Conference on Cystic Fibrosis of the Pancreas (Mucoviscidosis), Part II, (E. Rossi and E. Stoll, eds.), pp. 244–269, Karger, Basel.Google Scholar
  93. Roseman, S., 1970, The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion, Chem. Phys. Lipids. 5: 270–297.PubMedCrossRefGoogle Scholar
  94. Roseman, S., Moses, F. E., Ludowieg, J., and Dorfman, A., 1953, The biosynthesis of hyaluronic acid by group A Streptococcus I. Utilization of 1-C14-glucose, J. Biol. Chem. 203: 213–225.PubMedGoogle Scholar
  95. Roseman, S., Davidson, E., Blumenthal, H. J., and Dockrill, M., 1958, Conversion of fructose-6-phosphate to glucosamine-6-phosphate by microbial and mammalian enzymes, Bacteriol. Proc. 107.Google Scholar
  96. Roseman, S., Hayes, F., and Ghosh, S., 1960, Enzymatic synthesis of N-acetylmannosamine 6-phosphate, Fed. Proc. 19: 85.Google Scholar
  97. Roseman, S., Distler, J. J., Moffatt, J. G., and Khorana, H. G., 1961a, Nucleoside polyphosphates. XI. An improved general method for the synthesis of nucleotide coenzymes. Synthesis of uridine-5′, cytidine-5′, and guanosine-5′ diphosphate derivatives, J. Am. Chem. Soc. 83: 659–663.CrossRefGoogle Scholar
  98. Roseman, S., Jourdian, G. W., Watson, D., and Rood, R., 1961b, Enzymatic synthesis of sialic acids 9-phosphates, Proc. Natl. Acad. Sci. U.S. 47: 958–961.CrossRefGoogle Scholar
  99. Roth, S., and White, D., 1972, Intercellular contact and cell-surface galactosyl transferase activity, Proc. Natl. Acad. Sci. U.S. 69: 485–489.CrossRefGoogle Scholar
  100. Roth, S., McGuire, E. J., and Roseman, S., 1971, Evidence for cell-surface glycosyltransferases: Their potential role in cellular recognition, J. Cell Biol. 51: 536–547.PubMedCrossRefGoogle Scholar
  101. Salo, W. L., and Fletcher, H. G., Jr., 1970a, Synthesis of 2-acetamido-2-deoxy-α-D-mannopyranosyl phosphate and uridine 5′-(2-acetamido-2-deoxy-α-D-mannopyranosyl dipotassium pyrophosphate), Biochemistry 9: 878–881.PubMedCrossRefGoogle Scholar
  102. Salo, W. L., and Fletcher, H. G., Jr., 1970b, Studies on the mechanism of action of uridine diphosphate N-acetylglucosamine 2-epimerase, Biochemistry 9: 882–885.PubMedCrossRefGoogle Scholar
  103. Schachter, H., and Rodén, L., 1973, The biosynthesis of animal glycoproteins, in: Metabolic Conjugation and Metabolic Hydrolysis, Vol. III (W. H. Fishman, ed.), pp. 1–149, Academic Press, New York.Google Scholar
  104. Schachter, H., Jabbal, I., Hudgin, R. L., Pinteric, L., McGuire, E. J., and Roseman, S., 1970, Intracellular localization of liver sugar nucleotide glycoprotein glycosyltransferases in a golgi-rich fraction, J. Biol. Chem. 245: 1090–1100.PubMedGoogle Scholar
  105. Schachter, H., McGuire, E. J., and Roseman, S., 1971, Sialic acids XIII. A uridine diphosphate D-galactose: mucin galactosyltransferase from porcine submaxillary gland, J. Biol. Chem. 246: 5321–5328.PubMedGoogle Scholar
  106. Schauer, R., 1970a, The biosynthesis of N-glycoloylneuraminic acid by an ascorbateor NADPH-dependent, N-acetyl hydroxylating “N-acetylneuraminate: O2-oxidoreductase” in homogenates of porcine submaxillary gland, Hoppe-Seyl. Z. 351: 783–791.Google Scholar
  107. Schauer, R., 1970b, Studies on the subcellular site of the biosynthesis of N-glycoloylneuraminic acid in porcine submaxillary gland, Hoppe-Seyl. Z. 351: 1353–1358.CrossRefGoogle Scholar
  108. Schauer, R., 1970c, Biosynthesis of N-acetylneuraminic acids I: Incorporation of [14C] acetate into slices of the submaxillary salivary glands of ox and horse, Hoppe-Seyl. Z. 351: 595–602.CrossRefGoogle Scholar
  109. Schauer, R., 1970d, Biosynthesis of N-acetyl-O-acetylneuraminic acid II: Studies on the substrate and intracellular localization of the bovine acetyl-coenzyme A: N-acetylneuraminate-7-and 8-O-acetyltransferase, Hoppe-Seyl. Z. 351: 749–758.CrossRefGoogle Scholar
  110. Schauer, R., 1972, Biosynthesis of glycoprotein precursors and the mechanism of their assembly, Biochem. J. 128: 112p–114p.PubMedGoogle Scholar
  111. Schauer, R., and Wember, M., 1971, Hydroxylation and O-acetylation of N-acetylneuraminic acid bound to glycoproteins of isolated subcellular membranes from porcine and bovine submaxillary glands, Hoppe-Seyl. Z. 352: 1282–1290.CrossRefGoogle Scholar
  112. Schauer, R., Wember, M., and Ferreira do Amaral, C., 1972, Synthesis of CMP-glycosides of radioactive N-acetyl-, N-glycoloyl-, N-acetyl-7-O-acetyl-and N-acetyl-8-O-acetylneuraminic acids by CMP-sialate synthetase from bovine submaxillary glands, Hoppe-Seyl. Z. 353: 883–886.Google Scholar
  113. Schoop, H. J., Schauer, R., and Faillard, H., 1969, Die oxydative entstehung von N-glykolyl-neuraminsäure aus N-acetyl-neuraminsäure, Hoppe-Seyl. Z. 350: 155–162.CrossRefGoogle Scholar
  114. Schrecker, A. W., and Kornberg, A., 1950, Reversible enzymatic synthesis of flavinadenine dinucleotide, J. Biol. Chem. 182: 795–803.PubMedGoogle Scholar
  115. Smith, E. E. B., Munch-Peterson, A., and Mills, G. T., 1953, Pyrophosphorolysis of uridine diphosphoglucose and “UDPX” by a rat liver nuclear fraction, Nature 172: 1038–1039.CrossRefGoogle Scholar
  116. Spiro, R. G., 1959, Studies on the biosynthesis of glucosamine in the intact rat, J. Biol. Chem. 234: 742–748.PubMedGoogle Scholar
  117. Spiro, R. G., 1970, Glycoproteins, in: Annual Review of Biochemistry, Vol. 39 (E. E. Snell, ed.), pp. 599–638, Annual Reviews, Palo Alto.Google Scholar
  118. Spiro, M. J., and Spiro, R. G., 1968, Glycoprotein biosynthesis: studies on thyroglobulin thyroid sialyltransferase, J. Biol. Chem. 243: 6520–6528.PubMedGoogle Scholar
  119. Spivak, C. T., and Roseman, S., 1966, UDP-N-acetyl-D-glucosamine 2′-epimerase, in: Methods in Enzymology, Vol. IX (W. A. Wood, ed.), pp. 612–615, Academic Press, New York.Google Scholar
  120. Tabor, H., Mehler, A. H., and Stadtman, E. R., 1953, The enzymatic acetylation of amines, J. Biol. Chem. 204: 127–138.PubMedGoogle Scholar
  121. Topper, Y. J., and Lipton, M. M., 1953, The biosynthesis of a Streptococcal capsular polysaccharide, J. Biol. Chem. 203: 135–142.PubMedGoogle Scholar
  122. Van Lenten, L., and Ashwell, G., 1972, The binding of desialylated glycoproteins by plasma membranes of rat liver—development of a quantitative inhibition assay, J. Biol. Chem. 247: 4633–4640.PubMedGoogle Scholar
  123. Wagner, R. R., and Cynkin, M. A., 1971, Glycoprotein biosynthesis: Incorporation of glycosyl groups into endogenous acceptors in a golgi-apparatus-rich fraction of liver, J. Biol. Chem. 246: 143–151.PubMedGoogle Scholar
  124. Warren, L., 1972, The biosynthesis and metabolism of amino sugars and amino-sugarcontaining compounds, in: Glycoproteins, Their Composition, Structure, and Function, Part B (A. Gottschalk, ed.), pp. 1097–1126, Elsevier Publishing Co., New York.Google Scholar
  125. Warren, L., and Blacklow, R. S., 1962, The biosynthesis of cytidine 5′-monophospho-N-acetylneuraminic acid by an enzyme from Neisseria meningitidis, J. Biol. Chem. 237: 3527–3534.PubMedGoogle Scholar
  126. Warren, L., and Felsenfeld, H., 1961a, The biosynthesis of N-acetylneuraminic acid, Biochem. Biophys. Res. Commun. 4: 232–235.PubMedCrossRefGoogle Scholar
  127. Warren, L., and Felsenfeld, H., 1961b, N-acetylmannosamine-6-phosphate and N-acetylneuraminic acid-9-phosphate as intermediates in sialic acid biosynthesis, Biochem. Biophys. Res. Commun. 5: 185–190.PubMedCrossRefGoogle Scholar
  128. Warren, L., and Felsenfeld, H., 1962, The biosynthesis of sialic acids, J. Biol. Chem. 237: 1421–1431.PubMedGoogle Scholar
  129. Watkins, W. M., 1966, Blood-group substances, Science 152: 172–181.PubMedCrossRefGoogle Scholar
  130. Watson, D. R., Jourdian, G. W., and Roseman, S., 1966, The sialic acids VIII. Sialic acid-9-phosphate synthetase, J. Biol. Chem. 241: 5627–5636.PubMedGoogle Scholar
  131. Winterburn, P. J., and Phelps, C. F., 1970, Relevance of feedback inhibition applied to the biosynthesis of hexosamines, Nature (Lond.) 228: 1311–1313.CrossRefGoogle Scholar
  132. Winterburn, P. J., and Phelps, C. F., 1971a, Purification and some kinetic properties of rat liver glucosamine synthetase, Biochem. J. 121: 701–709.PubMedGoogle Scholar
  133. Winterburn, P. J., and Phelps, C. F., 1971b, Studies on the control of hexosamine biosynthesis by glucosamine synthetase, Biochem. J. 121: 711–720.PubMedGoogle Scholar
  134. Winterburn, P. J., and Phelps, C. F., 1971c, Binding of substrates and modifiers to glucosamine synthetase, Biochem. J. 121: 721–730.PubMedGoogle Scholar
  135. Winterburn, P. J., and Phelps, C. F., 1972, The significance of glycosylated proteins, Nature (Lond.), 236: 147–151.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Edward John McGuire
    • 1
  1. 1.National Jewish Hospital and Research CenterDenverUSA

Personalised recommendations