Laser Triggered Switching of a Pulsed Charged Oil Filled Spark Gap

  • A. H. Guenther
  • G. L. Zigler
  • J. R. Bettis
  • R. P. Copeland


A focused, Q-spoiled laser, aligned along the interelectrode axis of a pulse charged switch assembly, was used to initiate the conduction of an overvolted transformer oil filled gap. Laser power varied between 5 and 200 MW and the voltage pulse exhibited a risetime of 500 nsec to a voltage of 700 kV. A parametric study of the factors affecting the delay between the laser pulse arrival at the gap and conduction of the gap was accomplished, in which the effect of the focal point location, laser power, switch polarity and voltage on the gap at laser arrival, was determined. Delay times as short as 12 nsec were recorded with jitter, a measure of reproducibility, in the low nanosecond region.


Laser Power Breakdown Voltage Liquid Dielectric Laser Arrival Marx Generator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.R. Bettis, “Laser-Triggered Megavolt Switching”, M.S. Thesis, Air Force Inst. of tech, Wright-Patterson AFB, UniO,1967).Google Scholar
  2. 2.
    W.K. Pendleton and A.H. Guenther, “Investigation of a Laser-Triggered Spark Gap”, Review of Scientific Instruments, 36, 1546–50 (Nov 1965).CrossRefGoogle Scholar
  3. 3.
    S. Barbini, “Coaxial Laser-Triggered Gap Study”, Conference on Controlled Thermonuclear Reactions, Prascatti, Italy (1966).Google Scholar
  4. 4.
    A.H. Guenther and J.R. Bettis, “Laser Triggered Megavolt Switching”, IEF.F, Journal of Quantum Electronics, QE-3, 581–88 (Nov 1967 ).Google Scholar
  5. 5.
    A.H. Guenther, R.H. McKnight, and J.R. Bettis, ‘Nanosecond Jitter High Voltage Switching Using a Repetitively Pulsed Laser“, NEREM Report, IEEE Publication F85, 3–7 ( (1967).Google Scholar
  6. 6.
    A.H. Guenther, J.R. Bettis, R.E. Anderson, and R.V. Wick, “Low Jitter Multigap Laser-Triggered Switching at 50 pps” IEEE Journal of Quantum Electronics, QE-6, 492–95 (Aug 1970).Google Scholar
  7. 7.
    A.H. Guenther and J.R. Bettis, “Laser-Triggered Switching”, Laser Interactions and Related Plasma Phenomena, 131–171, Plenum Press (1971).Google Scholar
  8. 8.
    D.M. Strickland, “A Laser-Triggered Switch Employing Solid Dielectrics”, M.S. Thesis, Air Force Inst. of Tech., Wright-Patterson AFB, Ohio (1969).Google Scholar
  9. 9.
    R.J. Clark, Laser-Triggered Switch Study, RADC Technical Report, TR-68–355, Rome Air Development Center, Griffiss AFB, New York (Dec 1968).Google Scholar
  10. 10.
    A.J. Marolda, “Laser Triggered Switching in a Liquid Dielectric”, IEEE Journal of Quantum Electronics, (Corresp) 503–5 (Aug 1968).Google Scholar
  11. 11.
    A.P. Alkhimov, V.V. Vorob’ev, V.K. Klimkin, A.H. Ponomarenko, and R.I. Soloukhin, “The Development of Electric Discharge in Water”, Soviet Physics Doklady 15 # 10, 959–61 (Apr 1971).Google Scholar
  12. 12.
    C.N. Bruce and E. Collet, Laser Instrumentation, AFWL-TR-64–127,0–364 551, Air Force Weapons Laboratory, Kirtland AFB, New Mexico (June 1965).Google Scholar
  13. 13.
    Glenn A. Hardway, A.H. Guenther, and A.K. Graf, “Applications of High Power Pulsed Lasers”, Annals of the New York Academy of Sciences, 168, 440–45 (Feb 1970).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • A. H. Guenther
    • 1
  • G. L. Zigler
    • 1
    • 2
  • J. R. Bettis
    • 1
  • R. P. Copeland
    • 1
  1. 1.Air Force Weapons LaboratoryKirtland Air Force BaseUSA
  2. 2.Air Force Institute of TechnologyWright-Patterson AFBUSA

Personalised recommendations