Superconductivity, Energy Storage and Switching

  • H. L. Laquer


The phenomenon of superconductivity can contribute to the technology of energy storage and switching in two distinct ways. On one hand, the zero resistivity of the superconductor can produce essentially infinite time constants, so that an inductive storage system can be charged from very low power sources. On the other hand, the recovery of finite resistivity in a normal-going superconducting switch can take place in extremely short times, so that a system can be made to deliver energy at a very high power level. Topics reviewed include: physics of superconductivity, limits to switching speed of superconductors, physical and engineering properties of superconducting materials and assemblies, switching methods, load impedance considerations, refrigeration economics, limitations imposed by present day and near term technology, performance of existing and planned energy storage systems, and a comparison with some alternative methods of storing and switching energy.


Energy Storage Critical Current Density Energy Storage System Plasma Compression Superconducting Magnet Energy Storage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    H. Kamerling Onnes, Further experiments with liquid helium. C. On the change of electric resistance of pure metals at very low temperatures etc. IV. The resistance of pure mercury at helium temperatures, Leiden Comm. 120b (28 April 1911); V. The disappearance of the resistance of mercury ibid., 122b (27 May 1911 ).Google Scholar
  2. 2).
    H. K. Onnes, Sur les resistances électriques, Solvay Congress Nov. 1911, Leiden Comm. Supply No. 29.Google Scholar
  3. 3).
    H. K. Onnes, VII. The potential difference necessary for the electric current through mercury below 4°19 K, Leiden Comm. 133a (22 Feb. 1913); V III. The sudden disappearance of the ordinary resistance of tin and the super-conductive state of lead, ibid., 133d (31 May 1913 ).Google Scholar
  4. 4).
    H. K. Onnes and W. Tuyn, X. Measurements concerning the electrical resistance of thallium in the temperature field of liquid helium, Leiden Comm. 160a (28 Oct. 1922 ).Google Scholar
  5. 5).
    W. Tuyn and H. K. Onnes, XII.Measurements concerning the electrical resistance of indium…., Leiden Comm. 167a (30 June 1923 ).Google Scholar
  6. 6).
    H. K. Onnes, Further experiments with liquid helium, I,….IX, The appearance of galvanic resistance in supra-conductors which are brought into a magnetic field at a threshold value of the field, Leiden Comm. 139f (28 Feb. 1914 ).Google Scholar
  7. 7).
    W. Meissner and R. Ochsenfeld, Ein neuer Effekt bei Eintritt der Supraleitfähigkeit, Naturwiss. 21, 787 (1933).CrossRefGoogle Scholar
  8. 8).
    C. J. Gorter and H. Casimir, Zur Thermodynamik des supraleitenden Zustandes, Phy-sik. Zeitschr. 35, 963 (1934).Google Scholar
  9. 9).
    F. and H. London, The electromagnetic equations of the supraconductor, Proc. Roy.Soc. A149, 71 (1935).CrossRefGoogle Scholar
  10. 10).
    J. Bardeen, L. N. Cooper and J. R. Schrieffer, Theory of superconductivity, Phys. Rev. 108, 1175 (1957).MathSciNetMATHCrossRefGoogle Scholar
  11. 11).
    W. J. de Haas and J. Voogd, The influence of magnetic fields on supraconductors (Pb-Bi and other alloys), Leiden Comm. 208b (29 March 1930 ).Google Scholar
  12. 12).
    B. T. Matthias, T. H. Geballe, S. Geller and E. Corenzwit, Superconductivity of Nb3Sn, Phys. Rev. 95, 1435 (1954).CrossRefGoogle Scholar
  13. 13).
    J. E. Kunzler, E. Buehler, F. S. L. Hsu and J. H. Wernick, Superconductivity in Nb Sn at high current density in a magnetic field of 88 kgauss, Phys. Rev. Lett. 6, 89 (1961).CrossRefGoogle Scholar
  14. 14).
    P. G. de Gennes, Superconductivity of Metals and Alloys, W. A. Benjamin Inc., New York, 1966, p. 265.Google Scholar
  15. 15).
    H. London, Phase-equilibrium of supra-conductors in a magnetic field, Proc. Roy. Soc. 152, 650 (1935).MATHCrossRefGoogle Scholar
  16. 16).
    A. B. Pippard, The surface energies of superconductors, Proc. Cambridge Phil. Soc. 47, 617 (1951).Google Scholar
  17. 17).
    V. L. Ginzburg and L. D. Landau, On the theory of superconductivity, Zh. Eksper. Teor. Fiz. 2, 1064 (1950); A. A. Abrikosov, On the magnetic properties of superconductors of the second group, Soviet Physics JETP 5, 1174 (1957); L. P. Gor’kov, Theory of superconducting alloys in a strong magnetic field near the critical temperature, ibid., 10, 998 (1960).Google Scholar
  18. 18).
    B. B. Goodman, Type II superconductors, Rept. Progr. Phys. 29, 445 (1966).CrossRefGoogle Scholar
  19. 19).
    a) C. P. Bean, Magnetization of hard superconductors Phys. Rev. Lett. 8, 250 (1962);CrossRefGoogle Scholar
  20. b) H. London, Alternating current losses in superconductors of the second kind, Phys. Lett. 6, 162 (1963).Google Scholar
  21. 20).
    For a comprehensive treatment and summary of superconductor stabilization see: M. N. Wilson, C. R. Walters, J. D. Lewin and P. F. Smith, Experimental and theoretical studies of filamentary superconducting composites, Jour. Phys. D, 3, 1517 (1970).Google Scholar
  22. 21).
    A. R. Kantrowitz and Z. J. J. Stekly, A new principle for the construction of stabilized superconducting coils, Appl, Phys. Lett. 6, 56 (1965).Google Scholar
  23. 22).
    J. R. Purcell and H. Desportes, The NAL bubble chamber magnet, Proc. 1972 Appl. Supercond. Conf., IEEE Pub. No, 72 CHO 682–5-TABSC, p. 246.Google Scholar
  24. 23).
    G. Bogner, The development of large superconducting DC magnets in Europe,ibid., p. 214.Google Scholar
  25. 24).
    H. L. Laquer, Superconductors for millisecond pulse applications, to be published.Google Scholar
  26. 25).
    R. R. Hake, Single shot pulsed magnetic fields from inductive energy stores, Los Alamos Report LA-4617 MS, UC-20, TID 4500, March 1971, 44 pp.Google Scholar
  27. 26).
    J. Sold, Application des supraconducteurs à l’accumulation et à la libération de l’énergie électrique, Entropie 39, May-June, 21 (1971), and many CEA reports dating from 1967.Google Scholar
  28. 27).
    D. L. Ameen and P. R. Wiederhold, Fast-acting superconducting power switches, Rev. Sci. Inst. 35, 733 (1964).CrossRefGoogle Scholar
  29. 28).
    J. P. Krebs, E. Santamaria, and J. Maldy, Superconducting devices for energy storage and switching, Proc. 4th Internat. Cryo. Eng. Conf. ( IPC 1972 ), p. 172.Google Scholar
  30. 29).
    H. L. Laquer, J. D. G. Lindsay, E. M. Little and D. M. Weldon, Superconducting Magnetic Energy Storage and Transfer, Proc. 1972 Appl. Supercond. Conf., p. 98.Google Scholar
  31. 30).
    H. L. Laquer, J. D. G. Lindsay, E. M. Little, J. D. Rogers and D. M. Weldon, Design options and trade-offs in superconducting magnetic energy storage with irreversible switching, Technology of Controlled Thermonuclear Fusion Experiments and the Engineering Aspects of Fusion Reactors, E. Linn Draper, Jr., ed., USAEC CONF-721111, 1974, p. 177.Google Scholar
  32. 31).
    T. A. Buchhold, Superconductive power supply and its application for electrical flux pumping, Cryogenics 4, 212 (1964).CrossRefGoogle Scholar
  33. 32).
    J. D. G. Lindsay and D. M. Weldon, personal communication.Google Scholar
  34. 33).
    S. L. Wipf and M. Soell, Flux flow properties of bare Nb-Ti wire, Proc. 4th Internat. Cryo. Eng. Conf. IPC Press 1972 p. 159.Google Scholar
  35. 34).
    K. Grawatsch, H. Köfler, P. Komarek, H. Kornmann and A. Ulbricht, Investigations for the development of superconducting power switches, IEEE Trans. Magnetics MAG-11 586 (1975).Google Scholar
  36. 35).
    H. L. Laquer, D. B Montgomery and D. M. Weldon, Superconductive energy storage and switching experiments, Proc. 13th Internat. Congr. Refrig. (IIR) 1971 p, 457Google Scholar
  37. 36) a) J. W. Bremer, Superconductive Devices, McGraw-Hill,New York,1962.Google Scholar
  38. b) V. L. Newhouse, Superconducting Devices, Ch.22 in SuperconductivityGoogle Scholar
  39. 37).
    Y. B. Kim, C. F. Hempstead and A. R. Strnad, Critical persistent currents in hard superconductors, Phys. Rev. Lett. 9, 306 (1962); Phys. Rev, 129, 528 (1963).Google Scholar
  40. 38).
    H. L. Laquer, Flux trapping and flux pumping with solenoidal superconductors, Proc. 11th Internat. Congr, Refrig. (IIR) 1963 p, 207.Google Scholar
  41. 39).
    A. D. Mclnturff, Superconductors for pulsed magnets, Proc. 1972 Appl. Supercond. Conf., P. 395.Google Scholar
  42. 40).
    R. A. Popley, D. J. Sambrook, C. R. Walters and M. N. Wilson, A new superconducting composite with low hysteresis loss, ibid., p, 516Google Scholar
  43. 41).
    L. R. Newkirk, F. A. Valencia, A. L. Giorgi, E. G. Szklarz and T. C. Wallace Bulk superconductivity above 20 K in Nb Ge, IEEE Trans. Magnetics (1975).Google Scholar
  44. 42).
    R. J. Bartlett, H. L. Laquer and R. D. Taylor, Critical currents in Nb Ge between 14 and 21 K, ibid., 405 (19751.Google Scholar
  45. 43).
    Ten papers at 1974 Appl. Supercond. Conf., ibid., pp. 231–302Google Scholar
  46. 44).
    J. R. Powell, Design and economics of large DC fusion magnets, Proc. 1972 Appl. Supercond. Conf. p. 346Google Scholar
  47. 45).
    K. Mawardi, Cryogenic switching systems for power transmission lines, U.S. Patent No. 3, 384, 762.Google Scholar
  48. 46).
    J. D. G. Lindsay et al, Development of a superconducting switch for magnetic energy storage systems, IEEE Trans. Magnetics MAG-11, 594 (1975)Google Scholar
  49. 47).
    Emerson and Cuming, Inc, Canton, MA Stycast 2850 FT and 2850 FT Blue, with catalyst 11.Google Scholar
  50. 48).
    M. S. Lubell, Superconducting toroidal magnets for fusion feasibility experiments and power reactors, Proc. 5th Internat. Cryo. Eng. Conf., to be publishedGoogle Scholar
  51. 49).
    S. L. Wipf, personal communication.Google Scholar
  52. 50).
    T. R. Strowbridge, Refrigeration for superconducting and cryogenic systems, IEEE Trans. Nucl. Sci. NS-16, No. 3, 1104 (1969).CrossRefGoogle Scholar
  53. 51).
    J. D. Rogers, B. L. Baker and D. M. Weldon, Parameter study of theta-pinch plasma physics reactor experiment, Proc. 5th Symp. on Engineering problems of Fusion Research,IEEE 73CH0843–3-NPS, 432 (1974).Google Scholar
  54. 52).
    J. N. DiMarco and L. C. Burkhardt, Characteristics of a magnetic energy storage system using exploding foils, J. Appl. Phys. 41, 3894 (1970).CrossRefGoogle Scholar
  55. 53).
    A. N. Greenwood and T. H. Lee, Theory and application of the commutation principle for HVDC circuit breakers, IEEE Trans. on Power App. Syst. PAS 91, 1570 (1972).CrossRefGoogle Scholar
  56. 54).
    E. J. Lucas, W. F. B. Punchard, R. J. Thome, R. L. Verga and J. M. Turner, Model coil tests for a pulsed superconducting magnet energy storage system, Proc. 1972 Appl. Supercond. Conf. p. 102.Google Scholar
  57. 55).
    M. A. Lutz, A Novel HVDC circuit interrupter for inductive energy storage systems, (cf. Ref. 30), USAEC CONF 721111, 1974,p. 298.Google Scholar
  58. 56).
    P. F. Smith and J. D. Lewin, Superconductive energy transfer systems, Particle Accel. 1, 155 (1970).Google Scholar
  59. 57).
    K. I. Thomassen, Reversible magnetic-energy transfer and storage systems, (cf. Ref. 30), USAEC CONF-721111, 1974 p. 208.Google Scholar
  60. 58).
    H. H. Kolm, The future of superconducting technology, Cryogenics 15, 63 (1975).CrossRefGoogle Scholar
  61. 59).
    M. Morpurgo, The design of the superconducting magnet for the ‘Omega’ project, Particle Accel. 1, 255 (1970).Google Scholar
  62. 60).
    V. E. Keilin et al., Some problems of force-cooled superconducting magnet systems, Proc. 5th Internat. Cryo. Eng. Conf., to be published.Google Scholar
  63. 61).
    S. L. Wipf, The case for flux pumps and some of their problems, Proc. 1968 Summer Study on Superconducting Devices and Accelerators, Brookhaven National Laborato-ry Report BNL 50155 (C-55) April 1969,p. 632 and 689.Google Scholar
  64. 62).
    J. Teno, O. K. Sonju, L. M. Lontai et al, Development of a pulsed high energy inductive energy storage system, unpublished AVCO report.Google Scholar
  65. 63).
    E. J. Lucas, Z. J. J. Stekly, A. Foldes and D. Milton, Use of superconducting coils as energy storage elements in pulsed system operations, IEEE Trans. on Magnetics MAG-3 No, 3, 280 (1967)Google Scholar
  66. 64).
    Personal communication from Magnetics Corp. of America to John D. Rogers.Google Scholar
  67. 65).
    S. C. Burnett, W. R. Ellis and F. L. Ribe, Parameter study of a pulsed high-beta fusion reactor based on the theta pinch, (cf. Ref. 30), USAEC CONF-721111, 1974, p. 160.Google Scholar
  68. 66).
    H. L. Laquer, Superconducting magnetic energy storage, Cryogenics 15, 73 (1975).CrossRefGoogle Scholar
  69. 67).
    R. A. Krakowski, F. L. Ribe, T. A. Coultas and A. J. Hatch, An engineering design study of a reference theta-pinch reactor (RTPR), Los Alamos Scientific Laboratory Report LA-5336, March 1974, 137 pp.Google Scholar
  70. 68).
    F. E. Mills, The Fermilab cryogenic energy storage system, IEEE Trans. Magnetics MAG-11, 489 (1975)Google Scholar
  71. 69).
    M. Ferrier, Stockage d’ênergie dans un enroulement supraconducteur, Low Temperatures and Electric Power, Pergamon Press, Oxford, 1970, p. 425.Google Scholar
  72. 70).
    a) R. W. Boom and H. A. Peterson, Superconductive energy storage for power systems, IEEE Trans. on Magnetics MAG-8 No. 3, 701 (1972).Google Scholar
  73. b) R. W. Boom, G. E. McIntosh, H. A. Peterson and W. C. Young, Superconducting Energy Storage,Adv. Cryo. Eng. 19, 117 (1974).Google Scholar
  74. 71).
    W. V. Hassenzahl, Will superconducting magnetic energy storage be used on electric utility systems ? IEEE Trans. MagneticsMAG-11 482 (1975).Google Scholar
  75. 72).
    V. V. Andrianov, V. B. Zenkevich et al, Discharge of a superconductor storage device into an inverter transformer, Soviet Physics-Doklady 16, 38 (1971).Google Scholar
  76. 73).
    R. C. Walker and H. C. Early, Halfmegampere magnetic-energy-storage pulse generator, Rev. Sci. Inst. 29, 1020 (1958).CrossRefGoogle Scholar
  77. 74).
    D. Kind, J. Salge, L. Schiweck and G. Newi, Explodierende Drähte zur Erzeugung von Megavolt-Impulsen in Hochspannungspriafkreisen, Elektrotechn. Zeitschr. A 92, 46 (1971).Google Scholar
  78. 75).
    R. Carruthers, (a) Energy Storage for thermonuclear research, Proc. I.E.E. 106, Pt. A Supp. 166 (1959); (b) The storage and transfer of energy, High Magnetic Fields, H. Kolm, B. Lax, F. Bitter, R. Mills, eds MIT press and John Wiley and Sons, New York, 1962, p. 307.Google Scholar
  79. 76).
    John Marshall, personal communicationGoogle Scholar
  80. 77).
    E. L. Kemp, The study of capacitive energy storage for a theta-pinch PTR compression coil, Proc. 5th Symp. etc. (cf. Ref. 51 ), p. 303.Google Scholar
  81. 78).
    E. L. Kemp, The final design of Scyllac, Proc. Symp. on Engineering Problems of Fusion Research, Los Alamos Report LA-4250, April 1969, Sec. Fl, 10 pp.Google Scholar
  82. 79).
    J. T. Brown and J. H. Cronin, Battery systems for peaking power generation, 1974 Intersociety Energy Conversion Engineering Conference IECEC, Paper 749139 p. 903.Google Scholar
  83. 80).
    W. J. Walsh et al, Development of prototype lithium/sulfur cells for application to load leveling devices in electric utilities, ibid., Paper 749140 p, 911Google Scholar
  84. 81).
    A. A. Chilenkas, J. E. Battles, P. A. Nelson and R. 0. Ivins, Lithium/sulfur batteries for marine application, ibid., Paper 749070 p. 654.Google Scholar
  85. 82).
    P. L. Kapitza, Method of producing strong magnetic field, Proc, Roy. Soc. 105, 691 (1924).Google Scholar
  86. 83).
    D. W. Rabenhorst, Potential applications for the superflywheel, 1971 IECEC Paper 719148 p, 1118.Google Scholar
  87. 84).
    R. F. and S. F. Post, Flywheels, Scientific American 229, No. 6, 17 (Dec. 1973).Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • H. L. Laquer
    • 1
  1. 1.Los Alamos Scientific LaboratoryUniversity of CaliforniaLos AlamosUSA

Personalised recommendations