Advertisement

Magnetically Driven Metal Liners for Plasma Compression

  • James W. Shearer
  • William C. Condit

Abstract

Adiabatic compression of a plasma can be accomplished by the implosion of a metal liner driven by an outer magnetic field. An inner magnetic field insulates the plasma from the metal. Analytic and computer studies have been done in cylindrical geometry for a copper liner. The minimum input energy per pulse Emin is found as a function of final plasma density, volume fill factor, liner compressibility, liner thickness, and the desired value of fusion energy multiplication α. We find that at optimum deuterium-tritium reaction temperatures (10–20 keV) Eminα 3/nf, where of is the final plasma density. For given values of Emin and nf, one can then determine the requirements for the outer magnetic field power supply that drives the liner implosion. Two possible cases are considered: an axial (Bz) magnetic field with azimuthal eddy current in the liner and an azimuthal (B θ ) magnetic field. The latter is shown to be inherently more efficient for transferring energy from the outer magnetic field to the liner. Finally, certain practical problems of liner formation and replacement in a fusion reactor vessel are briefly discussed.

Keywords

Skin Depth Liner System Naval Research Laboratory Metal Liner Compression Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. G. Linhart, “Plasma and Mega-gauss Fields,” in Proceedings of the Conference on Megagauss Magnetic Field Generation by Explosives and Related Experiments H. Knoepfel and F. Herlach, Eds., Euratom, Brussels, Rept. EUR 2750.e (1966), pp. 387–396.Google Scholar
  2. 2.
    E. Velikhov, in Proceedings of the Fifth European Conference on Controlled Fusion and Plasma Physics ( Grenoble, August, 1972 ).Google Scholar
  3. 3.
    D. B. Thomson, R. S. Caird, W. B. Garn, C. M. Fowler, “Plasma Compression by Explosively Produced Magnetic Fields,” pp. 491–514 of Ref. 1.Google Scholar
  4. E. P. Velikhov, A. A. Vedenov, A. D. Bogdanets, V. S. Golubev, E. G. Kasharskii, Zh. Tekh. Fiz, 43, 429 (1973)Google Scholar
  5. E. P. Velikhov, A. A. Vedenov, A. D. Bogdanets, V. S. Golubev, E. G. Kasharskii, [English transi. Soy. Phys, Tech, Phys. 18, 274 (1973)].Google Scholar
  6. 5.
    J. P. Boris, R. A. Shanny, and N. K. Winsor, Bull. Amer. Phys. Soc. 17, 1029 (1972)Google Scholar
  7. 6.
    P. J. Turchi, Naval Research Laboratory, Washington, D. C., private communication.Google Scholar
  8. 7.
    R. N. Keeler, “High Pressure Compressibilities,” In American Institute of Physics Handbook, 3rd ed., D. E. Gray and M. W. Zemansky, Eds, (McGraw-Hill, New York, 1972), pp. 4–96 to 4–104.Google Scholar
  9. 8.
    A. Barcilon, D. L. Book, and A. L. Cooper, Hydrodynamic Stability of a Rotating Liner, Naval Research Laboratory, Washington, D. C., NRL Memorandum Rept. 2776 (1974).Google Scholar
  10. 9.
    S. L. Greene, Jr., Maxwell-Averaged Cross Sections for Some Thermonuclear Reactions on Light Isotopes, Lawrence Livermore Laboratory, Livermore, Calif., Rept. UCRL70522 (1967).Google Scholar
  11. 10.
    NBS Handbook of Mathematical Functions, M. Abramowitz and I. A. Stegun, Eds. (Dover Publications, New York, 1968), pp. 258–272Google Scholar
  12. 11.
    J. D. Lawson, Proc. Phys, Soc. London, Sec. B 70, 6 (1957).CrossRefGoogle Scholar
  13. 12.
    J. W. Shearer, F. F. Abraham, C. M. Aplin, B. P. Benham, J. F. Faulkner, F. C. Ford, M. M. Hill, C. A. McDonald, W. H. Stephens, D. J. Steinberg, and J. R. Wilson, J. Appl. Phys. 39, 2102 (1968).CrossRefGoogle Scholar
  14. 13.
    J. W. Shearer, J. Appl, Phys. 40, 4490 (1969).CrossRefGoogle Scholar
  15. W. C. Condit, A Parameter Study of B 7 Liner Implosions for Possible CTR Applications, Lawrence Livermore Laboratory, Livermore, Calif., Rept. UCID-16474 (1974).Google Scholar
  16. 15.
    G. B. Zimmerman, Numerical Simulation of the High Density Approach to Laser Fusion, Lawrence Livermore Laboratory, Livermore, Calif., Rept. UCRL-75173 (1973).Google Scholar
  17. 16.
    R. E. Kidder, “Compression of Magnetic Field Inside a Hollow Explosive-Driven Cylindrical Conductor,” pp. 37–54 of Ref. 1.Google Scholar
  18. 17.
    D. J. Steinberg, Lawrence Livermore Laboratory, Livermore, Calif., private communication.Google Scholar
  19. 18.
    J. M. Dawson, A. Hertzberg, G. C. Vlases, H. G. Ahlstrom, L. C. Steinhauer, R. E. Kidder, and W. L. Kruer, “Controlled Fusion Using Long Wavelength Laser Heating with Magnetic Confinement,” to be published in Fundamental and Applied Laser Physics, M. S. Feld, A. Javan, and N. A. Kurnit, Eds, ( Wiley, New York, 1973 ).Google Scholar
  20. 19.
    R. L. Morse, Phys, Fluids 16, 545 (1973).CrossRefGoogle Scholar
  21. W. Koppendorfer, W. Schneider, and J. Sommer, “Conclusions on Linear Reactor Devices from Theoretical and Experimental Investigations of End Losses from Theta Pinch Plasmas,” 5th European Conference on Controlled Fusion and Plasma Physics, 21–25 August 1972, Grenoble, France.Google Scholar
  22. 21.
    R. E. Kidder, “Some Aspects of Controlled Fusion by Use of Lasers,” to be published in Ref. 18.Google Scholar
  23. 22.
    J. D. Lee, Neutronics of Subcritical Fast Fission Blankets for D-T Fusion Reactors, Lawrence Livermore Laboratory, Livermore, Calif„ Rept. UCRL-73952 (1972).Google Scholar
  24. 23.
    H. P. Furth and D. L. Jassby, Phys, Rev, Lett, 32, 1176 (1974).CrossRefGoogle Scholar
  25. 24.
    V. V. Mirnov and D. D. Ryutov, Nucl, Fusion, 12, 627 (1972).CrossRefGoogle Scholar
  26. 25.
    B. G. Logan, I. G. Brown, M. A. Lieberman, and A. J. Lichtenberg, Phys, Rev, Lett, 29, 1435 (1972).CrossRefGoogle Scholar
  27. 26.
    A. E. Robson, The Flying Cusp: A Compact Pulsed Fusion System, Naval Research Laboratory, Washington, D. C., NRL Memorandum Rept, 2692 (1973).Google Scholar
  28. 27.
    P. J. Turchi, “Spherical Implosion of Thick Liners with Compressibility and Plasma Loss,” Naval Research Laboratory, Washington, D. C., NRL Memorandum Rept, 2711 (1974).Google Scholar
  29. 28.
    H. Sahlin, Lawrence Livermore Laboratory, Livermore, Calif„ private communication.Google Scholar
  30. 29.
    S. G. Alikhanov, V. G. Belan, A. J. Ivanchenko, V. N. Karasjuk, and G. N. Kichigan, J, Sci, Instrum, (J. Phys. E) Series 2, 1, 543 (1968).CrossRefGoogle Scholar
  31. 30.
    J. W. Shearer, The Theta Field Liner Concept Lawrence Livermore Laboratory, Livermore, Calif„ Rept. UCID-16418 (1973).Google Scholar
  32. 31.
    A. E. Robson, Naval Research Laboratory, Washington, D. C., private communication.Google Scholar
  33. 32.
    A. E. Robson, Fundamental Requirements of a Fusion Feasibility Experiment Based on Flux Compression by a Collapsing Liner, Naval Research Laboratory, Washington, D. C., NRL Memorandum Rept. 2616 (1973).Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • James W. Shearer
    • 1
  • William C. Condit
    • 1
  1. 1.Lawrence Livermore LaboratoryUniversity of CaliforniaLivermoreUSA

Personalised recommendations