Advertisement

Martensitic Transformations in β Phase Alloys

  • S. Vatanayon
  • R. F. Hehemann

Abstract

CsCl type ordered phases occur frequently in equiatomic alloys. Two broad classes of these phases are recognized (1). The first, with by far the largest number of members, involves transition metals in which one component lies to the left and the other to the right of the chromium group. The equiatomic Ti-Ni alloy is a member of this category, which, for the present purposes, will also be considered to include uranium and its alloys. In the latter systems, however, the high temperature phase generally exhibits a disordered BCC structure. The β phases of the noble metals constitutes the second class. These exhibit the CsCl structure when alloyed with group IIb elements and other ordering arrangements when alloyed with higher valance solutes.

Keywords

Martensitic Transformation Martensitic Structure Displacement Wave Diffuse Plane Extra Reflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Nevitt, Electronic Structure and Alloy Chemistry of the Transition Elements, edited by P. A. Beck, John Wiley, 1963, p. 101.Google Scholar
  2. 2.
    C. M. Wayman and K. Shimizu, Metal Sci. Journ.,6, 175 (1972).CrossRefGoogle Scholar
  3. 3.
    H. Warlimont and L. Delaey, Progress in Materials Science, Pergamon Press,18, 1974.Google Scholar
  4. 4.
    A. E. Dwight, R. A. Conner, Jr., and J. W. Downey, Acta Cryst.,18, 835 (1965).CrossRefGoogle Scholar
  5. 5.
    R. J. Jackson and W. L. Larsen, J. Nuc. Mat.21, 263 (1967).CrossRefGoogle Scholar
  6. 6.
    R. S. Toth and H. Sato, Acta Met.,16, 413 (1968).CrossRefGoogle Scholar
  7. 7.
    Reference 3, page 38.Google Scholar
  8. 8.
    P. W. Forsbergh, Phys. Rev.,76, 1187 (1949).CrossRefGoogle Scholar
  9. 9.
    C. Zener, Phys. Rev.,71, 846 (1947).CrossRefGoogle Scholar
  10. 10.
    W. Cochran, Advan. Phys.,9, 387 (1960);10, 401 (1961).Google Scholar
  11. 11.
    J. F. Scott, Rev. Mod. Phys.,46, 83 (1974).CrossRefGoogle Scholar
  12. 12.
    F. E. Wang, B. F. De Savage, W. J. Buehler and W. R. Hosler, J. Appl. Phys.,39, 2166 (1968).CrossRefGoogle Scholar
  13. 13.
    S. Zirinsky, Acta Met.,4, 164 (1956).CrossRefGoogle Scholar
  14. 14.
    R. R.Hasiguti and K. Iwasaki, J. Appl. Phys.,39, 2182 (1968).Google Scholar
  15. 15.
    N. G. Pace and G. A. Saunders, Phil. Mag.,22, 73 (1970).CrossRefGoogle Scholar
  16. 16.
    R. J. Wasilewski, Trans. TMS-AIME,233, 1691, (1965).Google Scholar
  17. 17.
    N. Nakanishi, Memoirs of the Konan University, Science Series, No. 15, Article 77, (1972).Google Scholar
  18. 18.
    W. J. Buehler and F. E. Wang, Ocean Eng.,1, 105, (1968).CrossRefGoogle Scholar
  19. 19.
    D. P. Dautovich and G. R. Purdy, Canadian Met. Quart.,4, 129 (1965).CrossRefGoogle Scholar
  20. 20.
    J. E. Hanlon, S. R. Butler and R. J. Wasilewski, Trans. TMSAIME,239, 1323, (1967).Google Scholar
  21. 21.
    H. Livingston and K. Mukherjee, J. Appl. Phys.,43, 4944 (1972).CrossRefGoogle Scholar
  22. 22.
    F. E. Wang, W. J. Buehler and S. J. Pickart, J. Appl. Phys.,36, 3232 (1965).CrossRefGoogle Scholar
  23. 23.
    K. Chandra and G. R. Purdy, J. Appl. Phys.,39, 2176 (1968).CrossRefGoogle Scholar
  24. 24.
    G. D. Sandrock, A. J. Perkins and R. F. Hehemann, Met. Trans.,2, 2769 (1971).CrossRefGoogle Scholar
  25. 25.
    R. J. Wasilewski, S. R. Butler and J. E. Hanlon, Met. Sci. J.,1, 104 (1967).CrossRefGoogle Scholar
  26. 26.
    D. P. Dautovich, Z. Melkvi, G. R. Purdy, and C. V. Stager, J. Appl. Phys.,37, 2513, (1966).CrossRefGoogle Scholar
  27. 27.
    F. E. Wang, S. J. Pickart, and H. A. Alperin, J. Appl. Phys.,43, 97, (1972).CrossRefGoogle Scholar
  28. 28.
    M. J. Marcinkowski, A. S. Sastri, and D. Koskimaki, Phil. Mag.,18, 945, (1968).CrossRefGoogle Scholar
  29. 29.
    K. Otsuka, T. Sawamura, and K. Shimizu, Phys. Stat. Sol., (a)5, 457, (1971).CrossRefGoogle Scholar
  30. 30.
    D. S. Lieberman, Phase Transformations, ASM, 1970, p. 1.Google Scholar
  31. 31.
    H. M. Ledbetter and C. M. Wayman, Met. Trans.,3, 2349, (1972).CrossRefGoogle Scholar
  32. 32.
    A. Olander, J. Amer. Chem. Soc.,54, 3819, (1932).CrossRefGoogle Scholar
  33. 33.
    W. Cochran and A. Zia, Phys. Stat. Sol.,25, 273 (1968).CrossRefGoogle Scholar
  34. 34.
    W. Cochran, The Dynamics of Atoms in Crystals, Crane and Russak, New York, 1973.Google Scholar
  35. 35.
    I. Cornelis, R. Oshima, H. C. Tong and C. M. Wayman, Scripta Met.,8, 133 (1974).CrossRefGoogle Scholar
  36. 36.
    L. Delaey, J. Van Paemel and T. Struyve, Scripta Met.,6, 507 (1972).CrossRefGoogle Scholar
  37. 37.
    W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Pergamon Press, 1958.Google Scholar
  38. 38.
    S. C. Moss, D. T. Keating and J. D. Axe, BNL Report 18098, 1973.Google Scholar
  39. 39.
    S. C. Moss, D. T. Keating and J. D. Axe, BNL Report 18110, 1973.Google Scholar
  40. 40.
    R. F. Hehemann and G. D. Sandrock, Scripta Met.,5, 801, (1971).CrossRefGoogle Scholar
  41. 41.
    A. Nagasawa, T. Maki and J. Kakinoki, J. Phys. Soc., Japan,26, 1560 (1969).CrossRefGoogle Scholar
  42. 42.
    Y. Murakami, N. Nakanishi and S. Kachi, Japanese J. Appl. Phys.,11, 1591 (1972).CrossRefGoogle Scholar
  43. 43.
    M. Oka, Y. Tanaka and K. Shimizu, Japanese J. Appl. Phys.,11, 1073 (1972).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York  1975

Authors and Affiliations

  • S. Vatanayon
    • 1
  • R. F. Hehemann
    • 1
  1. 1.Case Western Reserve UniversityClevelandUSA

Personalised recommendations