Crystallography and Thermodynamics of SME-Martensites

  • L. Delaey
  • H. Warlimont


SME-martensites are characterized by stress-induced macroscopic shape changes and reversal of these shape changes by simple heating. The shape changes result from stress-induced martensite formation or reorientation. The essential parameters in which the martensitic phase transition will be described are structural, crystallographic and thermodynamic. Three conditions are essential for the occurrence of the shape memory effect: 1. a low energy of nucleation (if the SME is associated with transformation) such that the martensite plates form at moderate rates of growth and, thus, with a high degree of structural perfection and reversibility; 2. a medium degree of frictional stress during growth or reorientation, respectively, such that structural reversibility is maintained while the impediment of interface motion is sufficient to prevent isothermal reversion; 3. a high capacity for elastic energy storage permitting large shape changes to be realized without the production of irreversible defects. The purpose of the present contribution is to show the close interrelationship, which exists for the SME martensites between these three parameters.


Habit Plane Shape Memory Effect Martensite Plate Positive Temperature Coefficient Close Packed Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Warlimont and L. Delaey, Progress in Mat. Science, 1975, vol.18Google Scholar
  2. 2.
    J. Van Paemel et al, Zeitschrift f. Metallk., vol.11, Aug. 1975 and J. Appl. Cryst., 1975, vol. 8,p. 181.Google Scholar
  3. 3.
    L. Delaey, A.J. Perkins and T.B. Massalski, J. of Mat. Science, 1972, vol. 7, p. 1197.CrossRefGoogle Scholar
  4. 4.
    N. Nakanishi et al, Trans. Jap. Met. 1965, vol. 6, p. 222 and Scripta Met. 1968, vol. 2, p. 673.Google Scholar
  5. 5.
    N. Rusovil and H. Warlimont, Proc. Of Int. Symp. on SME, this volume.Google Scholar
  6. 6.
    K.D. Swartz, W. Bensch and A. V. Granato, Univ. of Iii. 1975.Google Scholar
  7. 7.
    P.C. Clapp, Phys. stat. sol. (b) 1975, vol. 57, p. 561.CrossRefGoogle Scholar
  8. 8.
    M. Chandrasekaran et al, Zeitschrift f. Metallkde, Sept. 1975, vol. 11.Google Scholar
  9. 9.
    J. Van Paemel and L. Delaey, ibid. Okt. 1975, vol. 11.Google Scholar
  10. 10.
    L. Delaey, J. Van Paemel and T. Struyve, Scripta Met., 1972, vol. 6, p. 507.CrossRefGoogle Scholar
  11. 11.
    N.Nakanishi, Y.Murakami and S. Kachi, Scripta Met., 1971,vol. 5, p433CrossRefGoogle Scholar
  12. 12.
    R.F. Hehemannand G.D. Sandrock, Scripta Met.1971, vol. and Met.Trans. 1971, vol. 2, p. 2769.Google Scholar
  13. 13.
    A.J.Perkins,Scripta Met.1974, vol.8, p. 31 and 439. 5, p. 801Google Scholar
  14. 14.
    P.L. Ferraglio and K. Mukherjee, Acta Met., 1974, vol. 22, p. 835.CrossRefGoogle Scholar
  15. 15.
    A. Nagasawa, J. of Phys. Soc. of Japan, 1973, vol. 35,p. 489.CrossRefGoogle Scholar
  16. 16.
    S.C. Abrahams, Mat. Res. Bull. 1971, vol.6 p. 881.Google Scholar
  17. 17.
    A. Nagasawa, Phys. Letters, 1973, vol. 45A, p. 265.CrossRefGoogle Scholar
  18. 18.
    M. Ahlers, Zeitschrift für Metallkunde, 1974, vol. 10,p. 636.Google Scholar
  19. 19.
    S. Mendelson, Phase Transitions, ed. L.E. Cross, Pergamon Press N.Y., 1973, p. 287, and Proc. of Int. Symp. on SME, this volume.Google Scholar
  20. 20.
    T. Tadaki, M. Tokoro and K. Shimizu, Scripta Met., 1974, vol. 8, P. 1077.CrossRefGoogle Scholar
  21. 21.
    R. Rapacioli and M. Ahlers, Scripta Met. 1973, vol. 7, p. 977.CrossRefGoogle Scholar
  22. 22.
    W. Arneodo and M. Ahlers, Scripta Met. 1973, vol. 22, p. 1287.CrossRefGoogle Scholar
  23. 23.
    W. Arneodo and M. Ahlers, Acta Met. 1973, vol. 22, p. 1475.CrossRefGoogle Scholar
  24. 24.
    S. Miura, S. Maeda and N. Nakanishi, Phil. Mag. 1974, vol. 30, p. 565.CrossRefGoogle Scholar
  25. 25.
    H. Tas, L. Delaey and A. Deruyttere, Met. Trans. 1973, vol. 4, p. 2833.CrossRefGoogle Scholar
  26. 26.
    Y. Cornelis, Ph.D. Thesis, Univ. of Ill., Urbana, 1973.Google Scholar
  27. 27.
    R. Rapacioli et al, Proc. of Int. Symp. on SME, this volume.Google Scholar
  28. 28.
    L. Delaey and Y. Cornelis, Acta Met. 1970, vol. 18, p. 1061.CrossRefGoogle Scholar
  29. 29.
    H. Tas et al, Zeitschrift für Met., 1973, vol. 64, p. 855 and 866.Google Scholar
  30. 30.
    G. F. Bolling and R.H. Richman, Acta Met. 1965, vol. 13, p. 709, 723 and 745 and Met. Trans. 1971, vol. 2, p. 2451.Google Scholar
  31. 31.
    L. Delaey, E. Vandevoorde and R.V. Krishnan, Proc. of Int. Symp. on SME, this volume.Google Scholar
  32. 32.
    H. Warlimont et al, Journ. of Mat. Science, 1974, vol. 9, p. 1545.CrossRefGoogle Scholar
  33. 33.
    L. Delaey, M. Ahlers, R. Rapacioli and M. Chandrasekaran, to be published.Google Scholar
  34. 34.
    H. Warlimont and D. Harter, Proc. 6 Int. Conf. Electr. Micros. Maruzen, Tokyo, 1966, vol. I, p. 453.Google Scholar
  35. 35.
    K. Otsuka et al Scripta Met. 1974, vol. 8, p. 913.CrossRefGoogle Scholar
  36. 36.
    K. Otsuka et al Proc. of Int. Symp. on SME, this volume.Google Scholar
  37. 37.
    C. Rodriguez and L.C. Brown, ibid.Google Scholar
  38. 38.
    G.V. Kurdyumov and G. Bull. Acad. Sci. USSR, Chem. Scr. 1936, vol. 2, p. 271.Google Scholar
  39. 39.
    H. Tas et al Scripta Met„ 1971, vol. 5, p. 1117.CrossRefGoogle Scholar
  40. 40.
    R.V. Krishnan and L.C. Brown, Metal. Trans. 1973, vol. 4, p. 423.CrossRefGoogle Scholar
  41. 41.
    R.V. Krishnan and L.C. Brown, Met. Trans. 1973, vol. 4, p. 1017.CrossRefGoogle Scholar
  42. 42.
    M.W. Burkart and T.A. Read, Trans. AIME, 1953, vol. 197, p. 1516.Google Scholar
  43. 43.
    J.R. Patel and M. Cohen, Acta Met., 1953, vol. 1, p. 531.CrossRefGoogle Scholar
  44. 44.
    H.C. Tong and C.M. Wayman, Acta Met., 1974, vol. 22, p. 887.CrossRefGoogle Scholar
  45. 45.
    Ibid, Scripta Met. 1974, vol. 8, p. 93.CrossRefGoogle Scholar
  46. 46.
    C.L. Magee, in “Phase Transformations”, ASM, Metals Park 1970, p. 115.Google Scholar
  47. 47.
    T. Nishizawa and K. Ishida, to be published.Google Scholar
  48. 48.
    A.M. Kosevich and V.S. Boiko, Sov. Phys. Nsp. 1971, vol. 14, p. 286.CrossRefGoogle Scholar
  49. 49.
    L. Delaey and J. Thienel, this symposium.Google Scholar
  50. 50.
    L. Delaey, F. Vandevoorde, R.V. Krishnan, this symposium.Google Scholar
  51. 51.
    K. Otsuka et al Proc. 4th Int. Conf. Crystal Growth, Tokyo 1974, p. 191.Google Scholar
  52. 52.
    K. Otsuka, H. Sakamoto and K. Shimizu, Scripta Met., 1975, vol. 9, p. 491.CrossRefGoogle Scholar
  53. 53.
    G.B. Olson and M. Cohen, private communication, to be published.Google Scholar
  54. 54.
    G.Hausch, J. Phys.Soc. Japan 1974, vol.37, p. 819 and 824.Google Scholar
  55. 55.
    M.Joos, C. Frantz and M. Gantois, this symposium.Google Scholar
  56. 56.
    H.Warlimont, G. Hausch, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York  1975

Authors and Affiliations

  • L. Delaey
    • 1
  • H. Warlimont
    • 2
  1. 1.Dept. MetaalkundeK.U.LLeuvenBelgium
  2. 2.AlusuisseForschung und EntwicklungNeuhausenSwitzerland

Personalised recommendations