Advertisement

Mechanisms for Martensite Formation and the Shape Memory Effect

  • S. Mendelson

Abstract

In addition to their technical potential pseudoelasticity and shape memory involve various interrelated effects which manifest themselves in the atomic motions between states. The phenomenological theories of Wechsler, Lieberman and Reed (W-L-R) (1), and Bowles and Mackenzie (B-M) (2), for the crystallography of martensitic transformations were formulated some twenty years ago and have since been applied to various alloys and to studies of pseudoelasticity and the shape memory effect. As is characteristic of most phenomenological theories in physics, discrepancies often exist; well known examples are the findings of different kinds of martensite in the same alloy and sometimes in the same safnple, and often with a variable internal structure. In ferrous martensites the habits show wide scatter in the region of {3,10,15}, and habits found near {225} and {111} are not predicted by the theory. Some of the scatter around {3,10,15} are attributed to variations in the twinned structure, while others have been explained by allowing for small dilatations in the product, by changing the elements of the lattice invariant deformation, or by allowing for multiple lattice invariant shears in the product.

Keywords

Habit Plane Shape Memory Effect Martensite Plate Martensite Formation Single Shear 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. S. Wechsler, D. S. Lieberman, and T. A. Read, Trans. AIME 197, 1503 (1953); J. Appt. Phys. 26, 473 (1955).CrossRefGoogle Scholar
  2. 2.
    J. S. Bowles and J. K. Mackenzie, Acta Met. 2, 129, 137 (1954).Google Scholar
  3. 3.
    D. S. Lieberman, PHASE TRANSFORMATIONS, Amer. Soc. Metals, Metals Park Ohio, p. 1 (1970).Google Scholar
  4. 4.
    B. A. Bilby and J. W. Christian, THE MECHANISM OF PHASE TRANSFORMATIONS IN METALS, Inst. Met. Monographs 18, 121 (1956); J. Iron and Steen Inst. Feb. 122 (1961).Google Scholar
  5. 5.
    J. W. Christian, J. Inst. Met. 386 84, (1955); Comments on Solid State Physics 1, 125 (1968).Google Scholar
  6. 6.
    S. Mendelson, Conference Abstracts, 1971 Fall Meeting of AIME, Detroit Mich., Paper No. 302 p. 310.Google Scholar
  7. 7.
    S. Mendelson, in PHASE TRANSITIONS - 1973, Edited by L. E. Cross, Pergamon Press (1973) p. 287.Google Scholar
  8. 8.
    S. Mendelson, in FUNDAMENTAL ASPECTS OF DISLOCATION THEORY p. 550. Ed. by J. O. Simmons, R. deWit and R. Bullough. Nat. Bur. Std. (US) Spec. Publ. No. 317 U.S. GPO, Washington DC (1970).Google Scholar
  9. 9.
    S. Mendelson, Proc. Conf. STRENGTH OF METALS AND ALLOYS, Tokyo, Japan (1967), Suppl. Japan Inst. Metals 9, 812 (1968).Google Scholar
  10. 10.
    S. Mendelson, Ref. 9, p. 819.Google Scholar
  11. 11.
    S. Mendelson, Mat. Sci. Eng. 4, 231 (1969).Google Scholar
  12. 12.
    S. Mendelson, Ref. 8, p. 495.Google Scholar
  13. 13.
    S. Mendelson, J. Appl. Phys. 43, 2102 (1972).CrossRefGoogle Scholar
  14. 14.
    S. Mendelson, in TITANIUM SCIENCE AND TECHNOLOGY, Vol. 3, Edited by R. I. Jaffee and H. M. Burte, Plenum Publ. Corp. p. 1585 (1973).Google Scholar
  15. 15.
    C. M. Wayman and K. Shimizu, Met. Sci. J. 6 175 (1972).CrossRefGoogle Scholar
  16. 16.
    L. Delaey and R. V. Krishnan, H. Tas, and H. Warlimint I, II, and III, J. Mat. Sci. 9, 1521, 1536, 1545 (1974).Google Scholar
  17. 17.
    J. Perkins, Met. Trans. 4, 2709 (1973); Scripta Met. 9, 121 (1975).Google Scholar
  18. 18.
    J. D. Eisenwesser and L. C. Brown, Met. Trans. 3, 1359 (1972); K. Oshi and L. C. Brown, Met. Trans. 2, 1971 (1971); R. V. Krishnan and L. C. Brown, Met. Trans. 4, 423 (1973).Google Scholar
  19. 19.
    K. E. Easterling and P. R. Swann, in THE MECHANISMS OF PHASE TRANSFORMATIONS IN CRYSTALLINE SOLIDS, Inst. Met. Monographs 33, 152 (1969).Google Scholar
  20. 20.
    J. Perkins, Scripta Met. 8, 31 (1974); 8, 439 (1974).CrossRefGoogle Scholar
  21. 21.
    I.A. Arbuzova, V. S. Gavrilyuk and L. G. Khandros, Fiz. Metal Metolloved 27, 1126 (1969).Google Scholar
  22. 22.
    R. E. Busch and R. T. Luederman and P. M. Cross, U.S. Army Materials Research Reports, AD 629726 (1966).Google Scholar
  23. 23.
    S. Miura, A. Ito and N. Nakanishi, Scripta Met. 9, 247 (1975).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York  1975

Authors and Affiliations

  • S. Mendelson
    • 1
  1. 1.The City University of New York Research FoundationThe City College of New YorkNew YorkUSA

Personalised recommendations