Advertisement

Shape Memory Effect and Anelasticity Associated with the Martensitic Transformation in the Stoechiometric Fe3Pt Alloy

  • M. Foos
  • C. Frantz
  • M. Gantois

Abstract

We have studied the behavior of the iron-platinum alloys of the Fe3Pt type subjected to various mechanical conditions before, during and after the martensitic transformation. Previous papers (1) (2) and (3) have shown that the characteristics of this martensitic transformation depend strongly on the long range order state of the parent austenitic phase; the Ms temperature is lowered as the degree of order is raised. When the order parameter S is ≥ 0,60, the transformation is thermoelastic (2) (3), and when this parameter is < 0,60, the transformation exhibits an appreciable thermal hysterisis. We have shown that the value S = 0,60 defines a limiting order parameter from which the disordering of the stoechiometric Fe3Pt alloy becomes a two-phase process. We shall report in this paper the results obtained in our study of the Shape Memory Effect (S.M.E.), superelasticity (or pseudo-elasticity), transformation plasticity and the internal friction. Theses effects are all related to the martensitic transformation and they will be discussed in connection with the initial order state of the austenite.

Keywords

Martensitic Transformation Internal Friction Shape Memory Effect Initial Deformation Martensite Volume Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. (1).
    D.P. Dunne and C.M. Wayman: Met. Trans., 1973, Vol. 4, p. 137.CrossRefGoogle Scholar
  2. (2).
    C. Frantz and M. Gantois: International Symposium of Order-Disorder Transformations in Alloys, Sept. 1973, Tübingen.Google Scholar
  3. (3).
    Herbeuval, C. Frantz and M. Gantois: Journées d’Automne Société Française de Métallurgie, Oct. 1973, Paris;Mém. Sc. Rev. Mét., 1974, LXXI, no 10, p. 647.Google Scholar
  4. (4).
    H.C. Tong and C.M. Wayman: Scripta Met., 1973, Vol. 7, p. 215.CrossRefGoogle Scholar
  5. (5).
    H. Pops: Met. Trans., 1970, Vol. 1, p. 251.Google Scholar
  6. (6).
    J.F. Delorme, R. Schmid, M. Robin and P. Gobin: J. Phys., 1971, Supp. no 7, Vol. 32, p. C - 101.Google Scholar
  7. (7).
    C.L. Magee: Thesis Carnegie Mellon University, 1966.Google Scholar
  8. (8).
    G.W. Greenwood and R.H. Johnson: Proc. Roy. Soc., 1965, Vol. A 283, p. 403.Google Scholar

Copyright information

© Springer Science+Business Media New York  1975

Authors and Affiliations

  • M. Foos
    • 1
  • C. Frantz
    • 1
  • M. Gantois
    • 1
  1. 1.Ecole des Mines Parc de SauruptLaboratoire de Génie MétallurgiqueNancy-CedexFrance

Personalised recommendations