Superelasticity and Shape Memory Effect in Cu-Sn Alloys

  • S. Miura
  • Y. Morita
  • N. Nakanishi


The martensitic transformation and the mechanical behavior in β-Cu-Sn alloy,mainly the composition of Cu-15.0 and 15.3 at.%Sn, have been studied by means of electrical resistivity measurements, X-ray diffraction patterns and tensile tests. The martensitic transformation temperature in Cu-Sn alloys decreased with increasing tin contents and the crystal structures of both thermal and stress-induced martensites in Cu-15.3 at.%Sn were found to be orthorhombic. The shape memory effect of thermal martensite in Cu-15.0at.%Sn alloy appears only for a slightly deformation, and the effect is mostly concerned with the stress-induced martensite in Cu-Sn alloy. After ageing at room temperature in β 1 phase, the tensile behavior showed remarkable superelasticity and critical stress to induce the martensite increased with increasing ageing time and deformation temperature. And also,the strain rate dependence of superelastic behavior was remarkable, at the lower strain rate the superelasticity disappeared because of the stabilization of the stress-induced marten-site.


Critical Stress Residual Strain Shape Memory Effect Strain Rate Dependence Superelastic Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.Warlimont: Iron and Steel Inst., Special Rep., 1965, vol. 93Google Scholar
  2. 2.
    N.F.Kennon and T.M.Miller: Trans.JIM, 1972,vol. 13,p. 322.Google Scholar
  3. 3.
    Z.Nishiyama,K.Shimizu and H.Morikawa: Trans.JIM,1968,vol.9,Suppl., p.930.Google Scholar
  4. 4.
    T.Soejima: Bull. Univ.of Osaka Prefecture,1967,Series A,vol. 16, p. 341.Google Scholar
  5. 5.
    N.Nakanishi,T.Mori,S.Miura,Y.Murakami and S.Kachi: Phil.Mag., 1973,vol. 28,p. 277.CrossRefGoogle Scholar
  6. 6.
    H.K.Birnbaum and T.A.Read: Trans.AIME, 1960,vol. 218,p. 662.Google Scholar
  7. 7.
    F.E.Wang,W.J.Buehler and S.J.Pickart: J.Appl.Phys., 1965,vol. 36, p. 3232.CrossRefGoogle Scholar
  8. 8.
    K.Oishi and L.C.Brown: Met.Trans., 1971,vol. 2,p. 1971.Google Scholar
  9. 9.
    C.M.Way:Scripta Met.,1971,vol.5,p.487.Google Scholar
  10. 10.
    K.Enami and S.Nenno:Met.Trans.,1971,vol.2,p.1487.Google Scholar
  11. 11.
    N.F.Kennon: Met. Sci. J., 1972,vol. 6,p. 64.CrossRefGoogle Scholar
  12. 12.
    J.D.Eisenwasser and L.C.Brown: Met. Trans., 1972,vol. 3,p. 1359.CrossRefGoogle Scholar
  13. 13.
    S.Miura, S.Maeda and N.Nakanishi: Phil. Mag., 1974,vol. 30,p. 565.CrossRefGoogle Scholar
  14. 14.
    H.Morikawa, K.Shimizu and Z.Nishiyama: Trans. JIM, 1967,vol. 8, p. 145.Google Scholar
  15. 15.
    Y.Murakami: Private communication.Google Scholar
  16. 16.
    I.A.Arbuzova, Yu.N.Koval’, V.V.Martynov, and L.G.Khandros: Fizika Metallov i. Metallovedenie, 1973,vol. 35,p. 1278.Google Scholar
  17. 17.
    K.Otsuka and K.Shimizu: Scripta Met., 1970,vol. 4,p. 469.CrossRefGoogle Scholar
  18. 18.
    G.Glover and T.B.Smith: “ The Mechanism of Phase Transformation in Metals”, Inst. Metals,1955,Monograph No. 18,p. 256.Google Scholar
  19. 19.
    E.R.Morgan and T.Ko: Acta Met., 1953,vol. 1,p. 36.CrossRefGoogle Scholar
  20. 20.
    S.Miura, T.Mori and N.Nakanishi:“Mechanical Behavior of Materials”(Proc. of the 1974 Symp. on Mech. Behavior of Materials), T.e Soc. Materials Sci. Japan, 1974,vol. II,p. 141.Google Scholar
  21. 21.
    D.V.Wield and E.Gillman: Scripta Met., 1972,vol. 6,p. 1157.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York  1975

Authors and Affiliations

  • S. Miura
    • 1
  • Y. Morita
    • 1
  • N. Nakanishi
    • 2
  1. 1.Department of Mechanical EngineeringDoshisha UniversityKyotoJapan
  2. 2.Department of ChemistryKonan UniversityKobeJapan

Personalised recommendations