Advertisement

Sound Propagation in Normal and Superfluid 3He

  • J. B. Ketterson
  • Pat R. Roach
  • B. M. Abraham
  • Paul D. Roach

Abstract

We present measurements of the pressure dependence of the attenuation and velocity of sound in the hydrodynamic regime and in both the normal and superfluid zero sound regime of 3He. The velocity and attenuation were studied at a frequency of 20.24 MHz and at pressures of 17.00, 21.00, 21.50, 21.80, 22.00, 23.17, 26.00, and 28.00 bar in the zero sound regime. In the hydrodynamic region the temperature dependence of the attenuation was studied at 5.48 and 10.02 MHz and at pressures of 0.69, 1.38, and 2.76 bar. At a pressure of 29.3 bar and frequency of 20.24 MHz the transition from hydrodynamic to zero sound behavior was studied for both the velocity and attenuation. In addition, the anisotropy of the velocity and the attenuation as a function of the angle between the direction of an applied external magnetic field and the sound propagation direction was observed in the superfluid A phase at a pressure of 26.0 bar; no anisotropy was observed in the B phase at 21.0 bar. The observed behavior associated with a collective excitation of the order parameter in the B phase is shown to be qualitatively in agreement with theoretical predictions. At pressures slightly above the polycritical point some unexplained structure is observed in the velocity near the AB transition.

Keywords

Sound Velocity Sound Propagation Fermi Liquid Zero Sound Lifetime Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    L. D. Landau, Zh. Eksp. Teor. Fiz. 32, 59 (1957), [Sov. Phys.-JETP 5 ,101 (1957)].Google Scholar
  2. (2).
    W. R. Abel, A. C. Anderson, and J. C. Wheatley, Phys. Rev. Lett. .17, 74 (1966).ADSCrossRefGoogle Scholar
  3. (3).
    C. J. Pethick, Phys. Rev. 185, 384 (1969).ADSCrossRefGoogle Scholar
  4. (4).
    G. Baym and C. Pethick, “Landau Fermi Liquid Theory and Low Temperature Properties of Liquid 3He,” in The Physics of Liquid and Solid Helium, Vol. II, edited by K. H. Bennemann and J. B. Ketterson (John Wiley, N.Y.) to be published.Google Scholar
  5. (5).
    L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1959).Google Scholar
  6. (6).
    A. A. Abrikosov and I. M. Khalatnikov, Rept. Progr. Phys. 22, 329 (1959).ADSCrossRefGoogle Scholar
  7. (7).
    G. A. Brooker, Proc. Roy. Soc. (London) 90, 397 (1967).ADSCrossRefGoogle Scholar
  8. (8).
    D. D. Osheroff, R. C. Richardson, and D. M. Lee, Phys. Rev. Lett. 28, 885 (1972).ADSCrossRefGoogle Scholar
  9. (9).
    T. A. Alvesalo, Yu. D. Anufriyev, H. K. Collan, O. V. Lounasmaa, and P. Wennerstrom, Phys. Rev. Lett.30, 962 (1973).ADSCrossRefGoogle Scholar
  10. (10).
    H. J. Kojima, D. N. Paulson, J. C. Wheatley, Phys. Rev.32, 141 (1974).ADSGoogle Scholar
  11. (11).
    T. J. Greytak, R. T. Johnson, D. N. Paulson, and J. C. Wheatley, Phys. Rev. Lett.31, 452 (1973).ADSCrossRefGoogle Scholar
  12. (12).
    W. J. Gully, D. D. Osheroff, D. T. Lawson, R. C. Richardson, and D. M. Lee, Phys. Rev. A 8, 1633 (1973).ADSCrossRefGoogle Scholar
  13. (13).
    A. I. Ahonen, M. T. Haikala, M. Krusius, and O. V. Lounasmaa, Phys. Rev. Lett. 33, 628 (1974).ADSCrossRefGoogle Scholar
  14. (14).
    P. W. Anderson and P. Morel, Phys. Rev. 123, 1911 (1961).MathSciNetADSCrossRefGoogle Scholar
  15. (15).
    P. W. Anderson and W. Brinkman, Phys. Rev. Lett. 30, 1108 (1973).ADSCrossRefGoogle Scholar
  16. (16).
    A. J. Leggett, Phys. Rev. Lett. 31, 352 (1973).ADSCrossRefGoogle Scholar
  17. (16a).
    R. Balian and N. R. Werthamer, Phys. Rev. 131, 1553 (1963).ADSCrossRefGoogle Scholar
  18. (17).
    P. Wölfle, Phys. Rev. Lett. 30, 1169 (1973); ibid. 1437 (1973).ADSCrossRefGoogle Scholar
  19. (18).
    H. Ebisawa and K. Maki, Progr. Theor. Phys. 51, 337 (1974).ADSCrossRefGoogle Scholar
  20. (19).
    K. Maki, J. Low Temp. Phys. 16, 465 (1974), and private communication.ADSCrossRefGoogle Scholar
  21. (20).
    J. W. Serene, “Theory of Collisionless Sound in Superfluid 3He,” Thesis, Cornell University (1974) and to be published.Google Scholar
  22. (20a).
    P. Wölfle, these proceedings, and to be published.Google Scholar
  23. (20b).
    K. Maki and H. Ebisawa, to be published.Google Scholar
  24. (21).
    We thank Dr. Serene for sending us his program for computing these quantities.Google Scholar
  25. (22).
    K. Miyano and J. B. Ketterson, Phys. Rev. Lett. 31, 1047 (1973),ADSCrossRefGoogle Scholar
  26. (23).
    K. Miyano and J. B. Ketterson, Phys. Rev. to be published.Google Scholar
  27. (24).
    B. M. Abraham, Y. Eckstein, J. B. Ketterson, and J. H. Vignos, Cryogenics 9 ,274 (1969).CrossRefGoogle Scholar
  28. (25).
    P. R. Roach, J. B. Ketterson, B. M. Abraham, J. Monson, and P. D. Roach, Rev. Sci. Instr.46, 207 (1975).ADSCrossRefGoogle Scholar
  29. (26).
    Paul D. Roach, B. M. Abraham, P. R. Roach, and J. B. Ketterson, to be published.Google Scholar
  30. (27).
    B. M. Abraham, D. W. Osborne, and B. Weinstock, Phys. Rev. 75, 988 (1949).ADSGoogle Scholar
  31. (28).
    K. N. Zinovieva, Zh. Eksp. Teor. Fiz.34, 609 (1958); [Sov. Phys.-JETP 7 ,421 (1958)].Google Scholar
  32. (29).
    R. D. Taylor and J. G. Dash, Phys. Rev. 132, 2372 (1965).Google Scholar
  33. (30).
    D. S. Betts, D. W. Osborne, B. Welber, and J. Wilks, Phil. Mag. 8, 977 (1963).ADSCrossRefGoogle Scholar
  34. (31).
    R. W. H. Webeler and D. C. Hammer, Phys. Lett. 21, 403 (1966).ADSCrossRefGoogle Scholar
  35. (32).
    M. A. Black, H. E. Hall, and K. Thompson, J. Phys. C4, 129 (1971).ADSCrossRefGoogle Scholar
  36. (33).
    W. R. Abel, A. C. Anderson, and J. C. Wheatley, Phys. Rev. Lett. 7 ,299 (1961)ADSCrossRefGoogle Scholar
  37. (33a).
    W. R. Abel, A. C. Anderson, and J. C. Wheatley, Phys. Rev. Lett. 17, 74 (1966).ADSCrossRefGoogle Scholar
  38. (34).
    B. M. Abraham, D. Chung, Y. Eckstein, J. B. Ketterson, and P. R. Roach, J. Low Temp. Phys. 6 ,521 (1972).ADSCrossRefGoogle Scholar
  39. (35).
    D. S. Betts, B. E. Keen, and J. Wilks, Proc. Roy. Soc. A 298, 34 (1965).ADSGoogle Scholar
  40. (36).
    V. J. Emery, Phys. Rev. 175, 251 (1968).ADSCrossRefGoogle Scholar
  41. (37).
    D. T. Lawson, W. J. Gully, S. Goldstein, R. C. Richardson, and D. M. Lee, Phys. Rev. Lett. 30, 541 (1973).ADSCrossRefGoogle Scholar
  42. (38).
    D. N. Paulson, R. T. Johnson, J. C. Wheatley, Phys. Rev. Lett.30, 829 (1973).ADSCrossRefGoogle Scholar
  43. (38a).
    Pat R. Roach, B. M. Abraham, M. Kuchnir, and J. B. Ketterson, Phys. Rev. Lett. 34, 711 (1975).ADSCrossRefGoogle Scholar
  44. (38b).
    Pat R. Roach, B. M. Abraham, P. D. Roach, and J. B. Ketterson, Phys. Rev. Lett. 34, 715 (1975).ADSCrossRefGoogle Scholar
  45. (38c).
    D. T. Lawson, H. M. Bozler, and D. M. Lee, Phys. Rev. Lett.34, 121 (1975).ADSCrossRefGoogle Scholar
  46. (39).
    R.A. Webb, T. J. Greytak, R. T. Johnson, and J. C. Wheatley, Phys. Rev. Lett.30, 210 (1973).ADSCrossRefGoogle Scholar
  47. (40).
    J. C. Wheatley, Physica 69, 218 (1973).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • J. B. Ketterson
    • 1
    • 2
  • Pat R. Roach
    • 2
  • B. M. Abraham
    • 2
  • Paul D. Roach
    • 2
  1. 1.Northwestern UniversityEvanstonUSA
  2. 2.Argonne National LaboratoryArgonneUSA

Personalised recommendations