Advertisement

Sound Propagation and Anisotropy in Liquid 3He A

  • D. T. Lawson
  • H. M. Bozler
  • D. M. Lee

Abstract

Various orientations of the energy gap of superfluid 3He A may be examined by varying the angle between the applied magnetic field and the direction of sound propagation. Strong evidence of anisotropy has been obtained from both velocity and attenuation measurements.

Keywords

Applied Magnetic Field Sound Propagation Sound Attenuation Zero Sound Attenuation Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    D. D. Osheroff, W. J. Gully, R. C. Richardson and D. M. Lee, Phys. Rev. Lett. 29, 920 (1972).ADSCrossRefGoogle Scholar
  2. (2).
    A. J. Leggett, Ann. Phys. (New York) 85, 11 (1974).ADSCrossRefGoogle Scholar
  3. (3).
    P. W. Anderson and P. Morel, Phys. Rev. 123, 1911 (1961).MathSciNetADSCrossRefGoogle Scholar
  4. (4).
    P. W. Anderson and W. F. Brinkman, Phys. Rev. Lett.30, 1108 (1973).ADSCrossRefGoogle Scholar
  5. (5).
    P. G. de Gennes, Proceedings of the Nobel Symposium 24, Collective Properties of Physical Systems, edited by B. Lundqvist and S. Lundqvist (Academic Press, New York, 1973), p. 112.Google Scholar
  6. (6).
    V. Ambegaokar, P. G. de Gennes and D. Rainer, Phys. Rev. A 9, 2676 (1974).ADSCrossRefGoogle Scholar
  7. (7).
    P. G. de Gennes and D. Rainer, Phys. Lett. 46A, 429 (1974).ADSGoogle Scholar
  8. (8).
    D. T. Lawson, H. M. Bozler and D. M. Lee, Phys. Rev. Lett. 34, 121 (1975).ADSCrossRefGoogle Scholar
  9. (9).
    W. P. Halperin, C. N. Archie, F. B. Rasmussen, and R. C. Richardson, to be published.Google Scholar
  10. (10).
    P. Wölfle, Phys. Rev. Lett. 30, 1169 (1973) and to be published;ADSCrossRefGoogle Scholar
  11. (10a).
    H. Ebisawa and K. Maki, Prog. Theor. Phys. 51, 337 (1974); J. W. Serene, thesis, Cornell University, 1974 (unpublished), and to be published. We have used the expressions derived by Serene in our calculations.ADSCrossRefGoogle Scholar
  12. (11).
    P. Wölfle, private communication.Google Scholar
  13. (12).
    J. B. Ketterson (these proceedings); Pat R. Roach, B. M. Abraham, M. Kuchnir, and J. B. Ketterson, preprint; Pat R. Roach, B. M. Abraham, P. D. Roach, and J. B. Ketterson, preprint.Google Scholar
  14. (13).
    W. J. Gully, D. D. Osheroff, D. T. Lawson, R. C. Richardson and D. M. Lee, Phys. Rev. A8, 1633 (1973).ADSCrossRefGoogle Scholar
  15. (14).
    V. Ambegaokar and N. D. Mermin, Phys. Rev. Lett.30, 81 (1973).ADSCrossRefGoogle Scholar
  16. (15).
    D. T. Lawson, W. J. Gully, S. Goldstein, R. C. Richardson and D. M. Lee, Phys. Rev. Lett. 30, 541 (1973)ADSCrossRefGoogle Scholar
  17. (15a).
    D. T. Lawson, W. J. Gully, S. Goldstein, R. C. Richardson and D. M. Lee, Phys. Rev. Lett. 30, 541 (1973), and J. Low Temp. Phys. 15, 169 (1974).ADSCrossRefGoogle Scholar
  18. (16).
    R. Balian and N. R. Werthamer, Phys. Rev. 131, 1553 (1963).ADSCrossRefGoogle Scholar
  19. (17).
    P. W. Anderson, Phys. Rev. Lett. 30, 368 (1973).ADSCrossRefGoogle Scholar
  20. (18).
    W. R. Abel, A. C. Anderson and J. C. Wheatley, Phys. Rev. Lett. 17, 74 (1966).ADSCrossRefGoogle Scholar
  21. (19).
    D. N. Paulson, R. T. Johnson, and J. C. Wheatley, Phys. Rev. Lett.30, 829 (1973).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • D. T. Lawson
    • 1
  • H. M. Bozler
    • 1
  • D. M. Lee
    • 1
    • 2
  1. 1.Laboratory of Atomic and Solid State PhysicsCornell UniversityIthacaUSA
  2. 2.Department of Physics and AstronomyUniversity of FloridaGainesvilleUSA

Personalised recommendations