Nonzero Temperature Variational Principle Applied to Low Temperature Liquid Sodium

  • R. L. Coldwell
  • M. A. Pokrant
  • A. A. Broyles


A previously derived nonzero temperature variational principle is applied to liquid sodium at 630°K to test the idea of treating fluids as collections of nuclei and electrons. The effects of symmetrizing the wave functions are incorporated using an extension of Lado’s method. The remainder of the Slater sum is parameterized using two-body effective potentials containing the analytic large-r and small-r limits and four additional parameters. The minimum of the variational integral is found by evaluating the multidimensional integrals, using the biased-selection Monte Carlo method, for 48 sets of parameter values. The resulting nucleon-nucleon distribution is compared with experiment and the nucleon-electron distribution with the ground-state, single atom Hartree-Fock result.


Variational Principle Single Atom Virial Theorem Liquid Sodium Multidimensional Integral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    M. A. Pokrant, A. A. Broyles, and R. L. Coldwell, Int. J. Quantum Chem. 8S, 403 (1974).Google Scholar
  2. (2).
    M. A. Pokrant, A. A. Broyles, and T. Dunn, Phys. Rev. A 10, 379 (1974).ADSCrossRefGoogle Scholar
  3. (3).
    T. Dunn and A. A. Broyles, Phys. Rev. 157, 156 (1967);ADSCrossRefGoogle Scholar
  4. (3a).
    M. A. Pokrant and F. A. Stevens, Jr., Phys. Rev. A7, 1630 (1973);ADSCrossRefGoogle Scholar
  5. (3b).
    F. A. Stevens, Jr. and M. A. Pokrant, Phys. Rev. A 8 ,990 (1973);ADSGoogle Scholar
  6. (3c).
    H. J. Shin, Doctoral dissertation, University of Florida, 1973 (unpublished).Google Scholar
  7. (4).
    F. Lado, J. Chem. Phys. 47, 5369 (1967).ADSCrossRefGoogle Scholar
  8. (5).
    F. A. Stevens, Jr. and M. A. Pokrant, J. Chem. Phys. 61, 3768 (1974).ADSCrossRefGoogle Scholar
  9. (6).
    M. A. Pokrant, J. Chem. Phys. (to be published).Google Scholar
  10. (7).
    R. L. Coldwell, Phys. Rev. A 7, 270 (1973)ADSGoogle Scholar
  11. (7a).
    R. L. Coldwell, T. P. Henry, and C. W. Woo, Phys. Rev. A 10, 897 (1974).ADSCrossRefGoogle Scholar
  12. (8).
    Calculated from the wave functions given in the supplement to the paper by E. Clementi, IBM Journal of Research and Development 9, 2 (1965).Google Scholar
  13. (9).
    The “experimental” g(r) is from a calculation by R. D. Murphy and M. L. Klein, Phys. Rev. A8, 2640 (1973), whose structure factors compared well with the experimental structure factors of A. J. Greenfield, J. Wellendorf, and N. Wiser, Phys. Rev. A 4, 1607 (1971).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • R. L. Coldwell
    • 1
  • M. A. Pokrant
    • 1
  • A. A. Broyles
    • 1
  1. 1.Department of Physics and AstronomyUniversity of FloridaGainesvilleUSA

Personalised recommendations