C-Number Representation for Multilevel Systems and the Quantum-Classical Correspondence

  • R. Gilmore
  • Charles M. Bowden
  • Lorenzo M. Narducci


We use the r-mode direct product coherent states as generating functions for r-level coherent states which are ideal for the description of collective behavior of an ensemble of N identical r-level atoms or molecules, where the r-levels are not necessarily evenly spaced. It is noted that the Lie algebra for an r-level system can be given a realization in terms of bilinear combinations of boson creation and annihilation operators. This provides a homomorphism from the algebra describing a multimode system to the algebra describing a multilevel system. This in turn provides a homomorphism from the multimode coherent states and their diagonal projectors onto the multilevel coherent states and their diagonal projectors. The action of a creation or annihilation operator on a multimode projector can be replaced by the action of a first order differential operator.


Coherent State Master Equation Operator Algebra Density Operator Annihilation Operator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    R. J. Glauber, Phys. Rev. 130, 2529 (1963); 131, 2766 (1963).MathSciNetADSCrossRefGoogle Scholar
  2. (2).
    K. E. Cahill, Phys. Rev. B138, 1566 (1965).MathSciNetADSCrossRefGoogle Scholar
  3. (3).
    W. H. Louisell, Proc. Int. Sch. of Physics, IS. Fermi Course 42. Quantum Optics, Edited by R. J. Glauber, Academic Press, 1969; sec. 1-2; M. Sargent III, M. 0. Scully, W. E. Lamb, Jr., Laser Physics, Addison-Wesley (1974), sec. 16.2.Google Scholar
  4. (4).
    L.M. Narducci, C. A. Coulter, and C. M. Bowden, Phys. Rev. A9, 829 (1974).ADSGoogle Scholar
  5. (5).
    L.M. Narducci, C. M. Bowden, V. Bluemel, and G. P. Carrazana, Phys. Rev. All, 280 (1975).Google Scholar
  6. (6).
    F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Phys. Rev. A6, 2211 (1973).ADSGoogle Scholar
  7. (7).
    R. Gilmore, Ann. Phys. (N.Y.) 74, 391 (1972).MathSciNetADSCrossRefGoogle Scholar
  8. (8).
    R. Gilmore, Rev. Mex. de Fisica Z3, 143 (1974).MathSciNetGoogle Scholar
  9. (9).
    R. H. Dicke, Phys. Rev. 93, 99 (1954).ADSMATHCrossRefGoogle Scholar
  10. (10).
    L. M. Narducci, C. M. Bowden, V. Bluemel, G. P. Carrazana, and R. A. Tuft, Phys. Rev. A., March 1975, in press.Google Scholar
  11. (11).
    In the cases mentioned, the c-number equations are of the Fokker-Planck type, except that the diffusion coefficient associated with the second partial derivative with respect to is nonpositive definite (Ref. 6, Sec. II and Ref. 10, Appendix B). The nonpositive definiteness of the diffusion matrix which arises can be removed in some cases on physical grounds by initially integrating over the variable in the diagonal representation of the density operator in the coherent state representation. See Ref. 4.Google Scholar
  12. (12).
    Ref. 7, pp. 452-455.Google Scholar
  13. (13).
    Ref. 6, eq. D20, p. 2235.Google Scholar
  14. (14).
    Ref. 6, eq. D22, p. 2235.Google Scholar
  15. (15).
    Ref. 6, Appendix D.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • R. Gilmore
    • 1
  • Charles M. Bowden
    • 2
  • Lorenzo M. Narducci
    • 3
  1. 1.University of South FloridaTampaUSA
  2. 2.Redstone ArsenalUSA
  3. 3.Worcester Polytechnic InstituteWorcesterUSA

Personalised recommendations