From the Growth Cone to the Synapse

Properties of Membranes Involved in Synapse Formation
  • Karl H. Pfenninger
  • Rosemary P. Rees
Part of the Current Topics in Neurobiology book series (CTNB)


The development of specific neuronal connections must be based on a set of intricate control mechanisms. The complexity of this fascinating problem results from (1) the enormous number of elements involved (in the human CNS, an estimated 1014 synapses are formed), (2) the long pathway of certain nerve fibers, and (3) the high selectivity of their synaptic connections, not only between and within groups of neurons, but even with regard to the localization of the synapse on an individual postsynaptic cell. Numerous papers (e.g., Sperry, 1944; Attardi and Sperry, 1963; Crossland et al., 1974a; for review, see Gaze, 1970; Jacobson, 1970; Jacobson, this volume) have suggested predetermined, high specificity of synaptic connections. Other experimental work with developing and regenerating parts of the central nervous system (for review, see Jacobson, 1970; Crossland et al., 1974a; Raisman and Field, 1973) as well as studies on synapse formation in vitro (Rees and Bunge, 1974) clearly indicate that the specificity of synaptic connections is not absolute and that it is strictly effective only during a certain period of embryonic development. This suggests that the constellation of neurons—i.e., the availability of certain postsynaptic candidates and the timing of their appearance—in a development brain area may greatly influence the resulting selectivity in synapse formation.


Synaptic Vesicle Growth Cone Synaptic Cleft Postsynaptic Density Coated Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adinolfi, A. M., 1972a, Morphogenesis of synaptic junctions in layers I and II of somatic sensory cortex, Exp. Neurol. 34: 372.CrossRefGoogle Scholar
  2. Adinolfi, A. M., 1972b, The organization of paramembranous densities during postnatal maturation of synaptic junctions in the cerebral cortex, Exp. Neurol. 34: 383.CrossRefGoogle Scholar
  3. Aghajanian, G. K., and Bloom, F. E., 1967, The formation of synaptic junctions in developing rat brain: A quantative electron microscopic study, Brain Res. 6: 716.CrossRefGoogle Scholar
  4. Akert, K., and Pfenninger, K., 1969, Synaptic fine structure and neural dynamics, in: Cellular Dynamics of the Neuron ( S. H. Barondes, ed.). pp. 245–260, I.S.C.B. Symposium, Paris, Academic Press, New York.Google Scholar
  5. Akert, K., Moor, H., Pfenninger K., and Sandri C., 1969, Contributions of new impregnation methods and freeze-etching to the problem of synaptic fine structure, in: Mechanisms of Synaptic Transmission (K. Akert and P. Waser, eds.), Prog. Brain Res. 31: 223.Google Scholar
  6. Akert, K., Moor, H., and Pfenninger, K., 1971, Synaptic fine structure, in: First International Symposium on Cell Biology and Cytopharmacology (F. Clementi and B. Ceccarelli, eds.), pp. 273–290, Advances in Cytopharmacology, Vol. 1, Raven Press, New York.Google Scholar
  7. Akert, K., Pfenninger, K., Sandri, C., and Moor, H., 1972, Freeze-etching and cytochemistry of vesicles and membrane complexes in synapses of the central nervous system, in: Structure and Function of Synapses ( G. D. Pappas and D. P. Purpura, eds.), pp. 67–86, Raven Press, New York.Google Scholar
  8. Altman, J., 1971, Coated vesicles and synaptogenesis: A developmental study in the cerebellar cortex of the rat, Brain Res. 30: 311.CrossRefGoogle Scholar
  9. Attardi, D. G., and Sperry, R. W., 1963, Preferential selection of central pathways by regenerating optic fibers, Exp. Neurol. 7: 46.CrossRefGoogle Scholar
  10. Barondes, S. H., 1974, Synaptic macromolecules: Identification and metabolism, Ann. Rev. Biochem. 43: 147.CrossRefGoogle Scholar
  11. Bennett, G., Leblond, C. P., and Haddad, A., 1974, Migration of glycoprotein from the Golgi apparatus to the surface of various cell types as shown by radioautography after labeled fucose injection to rats, J. Cell Biol. 60: 258.CrossRefGoogle Scholar
  12. Bernhard, W., and Avrameas, S., 1971, Ultrastructural visualization of cellular carbohydrate components by means of concanavalin A, Exp. Cell Res. 64: 232.CrossRefGoogle Scholar
  13. Bittiger, H., and Schnebli, H. P., 1974, Binding of concanavalin A and ricin to synaptic junctions of rat brain, Nature (London) 249: 370.CrossRefGoogle Scholar
  14. Bloom, F. E., 1972, The formation of synaptic junctions in developing rat brain, in: Structure and Function of Synapses (G. D. Pappas and D. P. Purpura eds.), pp. 101–120, Raven Press, New York.Google Scholar
  15. Bloom, F. E., and Aghajanian, G. K., 1968, Fine structural and cytochemical analysis of the staining of synaptic junctions with phosphotungstic acid, J. Ultrastruct. Res. 22: 361.CrossRefGoogle Scholar
  16. Bodian, D., 1966, Development of fine structure of spinal cord in monkey fetuses. I. Motoneuron neuropil at time of onset of reflex activity, Bull. Johns Hopkins Hosp. 119: 129.Google Scholar
  17. Bodian, D., 1968, Development of the fine structure of spinal cord in monkey fetuses. II. Pre-reflex period to period of long intersegmental reflexes, J. Comp. Neurol. 133: 113.CrossRefGoogle Scholar
  18. Bondareff, W., 1967, An intercellular substance in rat cerebral cortex, submicroscopic distribution of ruthenium red, Anat. Rec. 157: 527.CrossRefGoogle Scholar
  19. Bondareff, W., and Sjöstrand, J., 1969, Cytochemistry of synaptosomes, Exp. Neurol. 24: 450.CrossRefGoogle Scholar
  20. Branton, D., 1967, Fracture faces of frozen myelin, Exp. Cell Res. 45: 703.CrossRefGoogle Scholar
  21. Bray, D., 1970, Surface movements during the growth of single explanted neurons, Proc. Natl. Acad. Sci. USA 65: 905.CrossRefGoogle Scholar
  22. Bray, D., 1972, Cytoplasmic actin: A comparative study, Cold Spring Harbor Symp. Quant. Biol. 37: 567.Google Scholar
  23. Bray, D., 1973, Branching patterns of individual sympathetic neurons in culture, J. Cell Biol. 56: 702.CrossRefGoogle Scholar
  24. Bretscher, M. S., 1973, Membrane structure: Some general principles, Science 181: 622.CrossRefGoogle Scholar
  25. Brunngraber, E. G., Dekirmenjian, H., and Brown, B. D., 1967, The distribution of protein-bound N-acetylneuraminic acid in subcellular fractions of rat brain, Biochem. J., 103: 73.Google Scholar
  26. Bunge, M. B., 1973, Fine structure of nerve fibers and growth cones of isolated sympathetic neurons in culture, J. Cell Biol. 56: 713.CrossRefGoogle Scholar
  27. Bunge, M. B., Bunge, R. P., and Peterson, E. R., 1967, The onset of synapse formation in spinal cord cultures as studied by electron microscopy, Brain Res. 6: 728.CrossRefGoogle Scholar
  28. Burger, M. M., 1971, Cell surface in neoplastic transformation, in: Current Topics in Cellular Regulation, (Vol. 3,B. L. Horecker and E. R. Stadtman, eds.), pp. 135–193, Academic Press, New York.Google Scholar
  29. Carter, S. B., 1967, Haptotaxis and the mechanism of cell motility, Nature (London) 213: 256.CrossRefGoogle Scholar
  30. Chamley, J. H., Goller, I., and Burnstock, G., 1973, Selective growth of sympathetic nerve fibers to explants of normally densely innervated autonomic effector organs in tissue culture, Dey. Biol. 31: 362.CrossRefGoogle Scholar
  31. Cotman, C. W., and Taylor, D., 1972, Isolation and structural studies on synaptic complexes from bat brain, J. Cell Biol. 55: 696.CrossRefGoogle Scholar
  32. Cotman, C. W., and Taylor, D., 1974, Localization and characterization of concanavalin A receptors in the synaptic cleft, J. Cell Biol. 62: 236.CrossRefGoogle Scholar
  33. Cotman, C. W., Mahler, H. R., and Hugli, T. E., 1968, Isolation and characterization of insoluble proteins of the synaptic plasma membrane, Arch. Biochem. Biophys. 126: 821.CrossRefGoogle Scholar
  34. Cotman, C. W., Banker, G., Churchill, L., and Taylor, D., 1974, Isolation of postsynaptic densities from rat brain, J. Cell Biol. 63: 441.CrossRefGoogle Scholar
  35. Crossland, W. J., Cowan, W. M., Rogers, L. A., and Kelly, J. P., 1974a, The specification of the retino-tectal projection in the chick, J. Comp. Neurol. 155: 127.Google Scholar
  36. Crossland, W. J., Currie, J. R., Rogers, L. A., and Cowan, W. M., 1974b, Evidence for a rapid phase of axoplasmic transport at early stages in the development of the visual system of the chick and frog, Brain Res. 78: 483.CrossRefGoogle Scholar
  37. Del Cerro, M. P., and Snider, D. S., 1968, Studies on the developing cerebellum: Ultrastructure of the growth cones, J. Comp. Neurol. 133:341CrossRefGoogle Scholar
  38. De Robertis, E., 1964, Histophysiology of Synapses and Neurosecretion, Pergamon Press, New YorkGoogle Scholar
  39. Droz, B., 1973, Renewal of synaptic proteins, Brain Res. 62: 383.CrossRefGoogle Scholar
  40. Dunn, G. A., 1971, Mutual contact inhibition of extension of chick sensory nerve fibres in vitro, J. Comp. Neurol. 143: 491.CrossRefGoogle Scholar
  41. Edelman, G. M., Spear, P. G., Rutishauser, U., and Yahara, I., 1974, Receptor specificity and mitogenesis in lymphocyte populations, in: The Cell Surface in Development ( A. A. Moscona, ed.), pp. 141–164, Wiley, New York.Google Scholar
  42. Forssman, J., 1900, Zur Kenntnis des Neurotropismus, (Ziegler’s) Beitr. pathol. Anat. allgem. Pathol. 27: 407.Google Scholar
  43. Friend, D. S., and Farquhar, M. G., 1967, Functions of coated vesicles during protein absorption in the rat vas deferens, J. Cell Biol. 35: 357.CrossRefGoogle Scholar
  44. Gaze, R. M., 1970, The Formation of Nerve Connections, Academic Press, London.Google Scholar
  45. Glees, P., and Sheppard, B. L., 1964, Electron microscopical studies of the synapse in the developing chick spinal cord, Z. Zellforsch. 62: 356.CrossRefGoogle Scholar
  46. Grainger, E., and James, D. W., 1970, Association of glial cells with the terminal parts of neunte bundles extending from chick spinal cord in vitro, Z. Zellforsch. 108: 93.CrossRefGoogle Scholar
  47. Gray, E. G., 1959, Axosomatic and axodendritic synapses of cerebral cortex: An electron microscopic study, J. Anat. 93: 420.Google Scholar
  48. Gray, E. G., 1966, Problems of interpreting the fine structure of vertebrate and invertebrate synapses, Int. Rev. Gen. Exp. Zool. 2: 139.Google Scholar
  49. Gray, E. G., 1969, Electron microscopy of excitatory and inhibitory synapses: A brief review, in: Mechanisms of Synaptic Transmission (K. Akert and P. G. Waser, eds.), Prog. Brain. Res. 31: 141.Google Scholar
  50. Gremo, F., Sjöstrand, J., and Marchisio, P. C., 1974, Radioautographic analysis of 3Hfucose labelled glycoproteins transported along the optic pathway of chick embryos, Cell Tissue Res. 153: 465.CrossRefGoogle Scholar
  51. Harrison, R. G., 1907, Observations on the living developing nerve fiber, Anat. Rec. 1: 116.CrossRefGoogle Scholar
  52. Harrison, R. G., 1910, The outgrowth of the nerve fiber as a mode of protoplasmic movement, J. Exp. Zool. 9: 787.CrossRefGoogle Scholar
  53. Hayes, B. P., and Roberts, A., 1973, Synaptic junction development in the spinal cord of an amphibian embryo: An electron microscope study, Z. Zellforsch. 137: 251.CrossRefGoogle Scholar
  54. Hibbard, E., 1967, Visual recovery following regeneration of the optic nerve through oculomotor nerve root in Xenopus, Exp. Neurol. 19: 350.CrossRefGoogle Scholar
  55. Hinds, J. W., and Hinds, P. L., 1972, Reconstruction of dendritic growth cones in neonatal mouse olfactory bulbs, J. Neurocytol. 1: 169.CrossRefGoogle Scholar
  56. Hughes, A., 1953, The growth of embryonic neurites: A study on cultures of chick neural tissues, J. Anat. 87: 150.Google Scholar
  57. Jacobson, M., 1970, Developmental Neurobiology, Holt, Rinehart and Winston, New York.Google Scholar
  58. James, D. W., and Tresman, R. L., 1972, The surface coats of chick dorsal root ganglion cells in vitro, J. Neurocytol. 1: 383.CrossRefGoogle Scholar
  59. Jones, D. G., Dittmer, M. M., and Reading, L. C., 1974, Synaptogenesis in guinea pig cerebral cortex: A glutaraldehyde-PTA study, Brain Res. 70: 245.CrossRefGoogle Scholar
  60. Kawana, E., Sandri, C., and Akert, K., 1971, Ultrastructure of growth cones in the cerebral cortex of the neonatal rat and cat, Z. Zellforsch. 115: 284.CrossRefGoogle Scholar
  61. Landis, D. M. D., and Reese, T. S., 1974, Differences in membrane structure between excitatory and inhibitory synapses in the cerebellar cortex, J. Comp. Neurol. 155: 93CrossRefGoogle Scholar
  62. Landis, D. M. D., Reese, T. S., and Raviola, E., 1974, Differences in membrane structure between excitatory and inhibitory components of the reciprocal synapses in the olfactory bulb, J. Comp. Neurol. 155: 67.Google Scholar
  63. Larramendi, L. M. H., 1969, Analysis of synaptogenesis in the mouse, in: Neurobiology of Cerebellar Evolution and Development ( R. Llinas, ed.), pp. 803–845, American Medical Association Educational and Research Foundation, Chicago.Google Scholar
  64. Lehninger, A. L., 1968, The neuronal membrane, Proc. Natl. Acad. Sci. USA 60: 1069.CrossRefGoogle Scholar
  65. Lewis, W. H., and Lewis, M. R., 1912, The cultivation of sympathetic nerves from the intestine of chick embryos in saline solution, Anat. Rec. 6: 7.CrossRefGoogle Scholar
  66. Marchisio, P. C., Gremo, F., and Sjöstrand, J., 1975, Axonal transport in embryonic neurons: The possibility of a proximo-distal axolemmal transfer of glycoproteins, Brain Res. 85: 281.CrossRefGoogle Scholar
  67. McNutt, S. N., and Weinstein, R. S., 1973, Membrane ultrastructure at mammalian intercellular junctions, Prog. Biophys. Mol. Biol. 26: 45.CrossRefGoogle Scholar
  68. Meyer, W. J., 1969, The localisation of extracellular substances in the brain with phosphotungstic acid, Anat. Rec. 163: 229 (abst.).Google Scholar
  69. Meyer, W. J., 1970, Distribution of phosphotungstic acid-stained carbohydrate moieties in the brain, dissertation, University of California at Los Angeles.Google Scholar
  70. Moscona, A. A., 1974, Surface specification of embryonic cells: Lectin receptors, cell recognition, and specific cell ligands, in: The Cell Surface in Development ( A. A. Moscona, ed.), pp. 67–99, Wiley, New York.Google Scholar
  71. Nakai, J., 1956, Dissociated dorsal root ganglia in tissue culture, Am. J. Anat. 99: 81.CrossRefGoogle Scholar
  72. Nakai, J., 1960, Studies on the mechanism determining the course of nerve fibers in tissue culture. II. The mechanism of fasciculation, Z. Zellforsch. 52: 427.CrossRefGoogle Scholar
  73. Nakai, J., and Kawasaki, Y., 1959, Studies on the mechanism determining the course of nerve fibers in tissue culture. I. The reaction of the growth cone to various obstructions, Z. Zellforsch. 51: 108.CrossRefGoogle Scholar
  74. Nakajima, S., 1965, Selectivity in fasciculation of nerve fibres in vitro, J. Comp. Neurol. 125: 193.CrossRefGoogle Scholar
  75. Ohlenbusch, H. H., Olivera, B. M., Tuan, D., and Davidson, N., 1967, Selective dissociation of histones from calf thymus nudeoprotein, J. Mol. Biol. 25: 299.CrossRefGoogle Scholar
  76. Olson, M. I., and Bunge, R. P., 1973, Anatomical observations on the specificity of synapse formation in tissue culture, Brain Res. 59: 19.CrossRefGoogle Scholar
  77. Oppenheim, R. W., and Foelix, R. F., 1972, Synaptogenesis in the chick embryo spinal cord, Nature (London) 235: 126.CrossRefGoogle Scholar
  78. Pappas, G. D., and Waxman, S. G., 1972, Synaptic fine structure—Morphological correlates of chemical and electrotonic transmission, in: Structure and Function of Synapses ( G. D. Pappas and D. P. Purpura, eds.), pp. 1–43, Raven Press, New York.Google Scholar
  79. Pease, D. C., 1966, Polysaccharides associated with the exterior surface of epithelial cells: Kidney, intestine, brain, J. Ultrastruct. Res. 15: 555.CrossRefGoogle Scholar
  80. Pease, D. C., 1970, Phosphotungstic acid as a specific electron stain for complex carbohydrates, J. Histochem. Cytochem 18: 455.CrossRefGoogle Scholar
  81. Pfenninger, K. H., 1971a, The cytochemistry of synaptic densities. I. An analysis of the bismuth iodide impregnation method, J. Ultrastruct. Res, 34: 103.CrossRefGoogle Scholar
  82. Pfenninger, K. H., 1971b, The cytochemistry of synaptic densities. II. Proteinaceous components and mechanism of synaptic connectivity, J. Ultrastruct. Res. 35: 451.CrossRefGoogle Scholar
  83. Pfenninger, K. H., 1972, Freeze-cleaving of outgrowing nerve fibers in tissue culture, J. Cell Biol. 55: 203a.Google Scholar
  84. Pfenninger, K. H., 1973, Synaptic morphology and cytochemistry, Prog. Histochem. Cytochem. 5: 1.CrossRefGoogle Scholar
  85. Pfenninger, K. H., 1974, Freeze-cleavage of cell monolayers grown in vitro, in: Proceedings of the 8th International Congress on Electron Microscopy, Canberra, Vol. II, pp. 38–39, Australian Academy of Science, Canberra.Google Scholar
  86. Pfenninger, K. H., and Bunge, M. B., 1973, Observations on plasmalemmal growth zones in developing neural tissue, J. Cell Biol. 59: 264a.Google Scholar
  87. Pfenninger, K. H., and Bunge, R. P., 1974, Freeze-fracturing of nerve growth cones and young fibers: A study of developing plasma membrane, J. Cell Biol. 63: 180.CrossRefGoogle Scholar
  88. Pfenninger, K. H., and Rinderer, E. R., 1975, Methods for the freeze-fracturing of nerve tissue cultures and cell monolayers, J. Cell Biol. 65: 15.CrossRefGoogle Scholar
  89. Pfenninger, K. H., and Rovainen, C. M., 1974, Stimulation-and calcium-dependence of vesicle attachment sites in the presynaptic membrane; a freeze-cleave study on the lamprey spinal cord, Brain Res. 72: 1.CrossRefGoogle Scholar
  90. Pfenninger, K., Sandri, C., Akert, K., and Eugster, C. H., 1969, Contribution to the problem of structural organization of the presynaptic area, Brain Res. 12: 10.CrossRefGoogle Scholar
  91. Pfenninger, K., Akert, K., Moor, H., and Sandri, C., 1972, The fine structure of freeze-fractured presynaptic membranes, J. Neurocytol. 1: 129.CrossRefGoogle Scholar
  92. Pfenninger, K. H., Bunge, M. B., and Bunge, R. P., 1974, Nerve growth cone plasmalemma—Its structure and development, in: Proceedings of the 8th International Congress on Electron Microscopy, Canberra, Vol. II, pp. 234–235, Australian Academy of Science, Canberra.Google Scholar
  93. Pollard, T. D., and Weihing, R. R., 1974, Actin and myosin and cell movement, CRC Crit. Rev. Biochem. 2: 1.CrossRefGoogle Scholar
  94. Pomerat, C. M., Hendelman, W. J., Raiborn, C. W., Jr., and Massey, J. F., 1967, Dynamic activities of nervous tissue in vitro, in: The Neuron ( H., Hyden, ed.), pp. 119–178, American Elsevier, New York.Google Scholar
  95. Raisman, G., and Field, P. M., 1973, A quantitative investigation of the development of collateral reinnervation after partial deafferentation of the septal nuclei, Brain Res. 50: 241.CrossRefGoogle Scholar
  96. Rambourg, A., and Leblond, C. P., 1967, Electron microscopic observation on the carbohydrate-rich cell coat present at the surface of cells in the rat, J. Cell Biol. 32: 27.CrossRefGoogle Scholar
  97. Ramon y Cajal, S., 1913, Estudios Sobre la Degeneracion y Regeneracion del Systema Nervioso, 2 vols. (trans. and ed. by R. M. May, 1928: Degeneration and Regeneration of the Nervous System), Hafner, New York, reprinted 1959.Google Scholar
  98. Ramon y Cajal, S., 1929, Etudes sur la Neurogénèse de Quelques Vertébrés (trans. by L. Guth: Studies on Vertebrate Neurogenesis), Thomas, Springfield, Ill., 1960.Google Scholar
  99. Ramon y Cajal, S., 1933, Neuronismo o Reticularismo? (trans. and ed. by M. U. Purkiss and C. A. Fox: Neuron Theory or Reticular Theory?), Consejo Superior de Investigaciones Cientificas, Instituto “Ramon y Cajal,” Madrid, 1954.Google Scholar
  100. Rees, R. P., and Bunge, R. P., 1974, Morphological and cytochemical studies of synapses formed in culture between isolated rat superior cervical ganglion neurons, J. Comp. Neurol. 157: 1.CrossRefGoogle Scholar
  101. Rees, R. P., Bunge, M. B., and Bunge, R. P., 1976, Morphological changes in the neuritic growth cone and target neuron during synaptic junction development in culture, J. Cell Bio. 68: 240.CrossRefGoogle Scholar
  102. Revel, J. P., and Ito, S., 1967, The surface components of cells, in: The Specificity of Cell Surfaces ( Davis and Warren, eds.), pp. 211–234, Prentice-Hall, Englewood Cliffs, N.J.Google Scholar
  103. Roth, S., McGuire, E. J., and Roseman, S., 1971, Evidence for cell surface glycosyltransferases: Their potential role in cellular recognition, J. Cell Biol. 51: 536.CrossRefGoogle Scholar
  104. Sandri, C, Akert, K., Livingston, R. B., and Moor, H., 1972, Particle aggregations at specialized sites in freeze-etched postsynaptic membranes, Brain Res. 41: 1.CrossRefGoogle Scholar
  105. Shienvold, F. L., and Kelly, D. E., 1974, Desmosome structure revealed by freeze-fracture and tannic acid staining, J. Cell Biol. 63: 313a.Google Scholar
  106. Sidman, R. L., 1974, Contact interaction among developing mammalian brain cells, in: The Cell Surface in Development ( A. A. Moscona, ed.), pp. 221–253, Wiley, New York.Google Scholar
  107. Sidman, R. L., and Rakic, P., 1973, Neuronal migration, with special reference to developing human brain: A review, Brain Res. 62: 1.CrossRefGoogle Scholar
  108. Singer, S. J., and Nicolson, G. L., 1972, The fluid mosaic model of the structure of cell membranes, Science 175: 720.CrossRefGoogle Scholar
  109. Sjöstrand, J., Karlsson, J.-O., and Marchisio, P. C., 1973, Axonal transport in growing and mature retinal ganglion cells, Brain Res. 62: 395.CrossRefGoogle Scholar
  110. Skoff, R. P., and Hamburger, B., 1974, Fine structure of dendritic and axonal growth cones in embryonic chick spinal cord, J. Comp. Neurol. 153: 107.CrossRefGoogle Scholar
  111. Speidel, C. C., 1933, Studies of living nerves. II. Activities of ameboid growth cones, sheath cells, and myelin segments, as revealed by prolonged observation of individual nerve fibers in frog tadpoles, Am. J. Anat. 52: 1.CrossRefGoogle Scholar
  112. Sperry, R. W., 1944, Optic nerve regeneration with return of vision in anurans, J. Neurophysiol. 7: 57.Google Scholar
  113. Sperry, R. W., 1963, Chemoaffinity in the orderly growth of nerve fiber patterns and connections, Proc. Natl. Acad. Sci. USA 50: 703.CrossRefGoogle Scholar
  114. Steck, T. L., 1974, The organization of proteins in the human red blood cell membrane, J. Cell Biol. 62: 1.CrossRefGoogle Scholar
  115. Stelzner, D. J., Martin, A. H., and Scott, G. L., 1973, Early stages of synaptogenesis in the cervical spinal cord of the chick embryo, Z. Zellforsch. 138: 475.CrossRefGoogle Scholar
  116. Streit, P., Akert, K., Sandri, C., Livingston, R. B., and Moor, H., 1972, Dynamic ultrastructure of presynaptic membranes at nerve terminals in the spinal cord of rats: Anesthetized and unanesthetized preparations compared, Brain Res. 48: 11.CrossRefGoogle Scholar
  117. Tani, E., and Ametani, T., 1971, Extracellular distribution of ruthenium red-positive substance in the cerebral cortex, J. Ultrastruct. Res. 34: 1.CrossRefGoogle Scholar
  118. Tennyson, V. M., 1970, The fine structure of the axon and growth cone of the dorsal root neuroblast of the rabbit embryo, J. Cell Biol. 44: 62.CrossRefGoogle Scholar
  119. Tillack, T. W., Scott, R. E., and Marchesi, V. T., 1972, The structure of erythrocyte membranes studied by freeze-etching. II. Localization of receptors for phytohemagglutinin and influenza virus to the intramembranous particles, J. Exp. Med. 135: 1209.CrossRefGoogle Scholar
  120. Weiss, P., and Taylor, A. C., 1944, Further experimental evidence against “neurotropism” in nerve regeneration, J. Exp. Zool. 95: 233.CrossRefGoogle Scholar
  121. Wolfe, L. S., 1961, The distribution of gangliosides in subcellular fractions of guinea pig cerebral cortex, Biochem. J. 79: 348.Google Scholar
  122. Van der Loos, H., 1963, Fine structure of synapses in the cerebral cortex, Z. Zellforsch. 60: 815.CrossRefGoogle Scholar
  123. Vaughn, J. E., Henrikson, C. K., and Grieshaber, J. A., 1974, A quantitative study of synapses on motor neuron dendritic growth cones in developing mouse spinal cord, J. Cell Biol. 60: 664.CrossRefGoogle Scholar
  124. Yamada, K. M., Spooner, B. S., and Wessells, N. K., 1970, Axon growth: Roles of microfilaments and microtubules, Proc. Natl. Acad. Sci. USA 66: 1206.CrossRefGoogle Scholar
  125. Yamada, K. M., Spooner, B. S., and Wessells, N. K., 1971, Ultrastructure and function of growth cones and axons of cultured nerve cells, J. Cell Biol. 49: 614.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Karl H. Pfenninger
    • 1
  • Rosemary P. Rees
    • 2
  1. 1.Section of Cell BiologyYale University School of MedicineNew HavenUSA
  2. 2.Department of AnatomyWashington University School of MedicineSt. LouisUSA

Personalised recommendations