Cell Surface Carbohydrate-Binding Proteins: Role in Cell Recognition

  • Samuel H. Barondes
  • Steven D. Rosen
Part of the Current Topics in Neurobiology book series (CTNB)


The complexity of cellular associations in the nervous system suggests a high level of development of cellular recognition processes. To understand these processes, it will be necessary to isolate the specific molecules that mediate cellular recognition. This task might be particularly difficult in the nervous system, where cellular interactions appear to be so complicated. Therefore, studies with simpler biological systems seem preferable to lay the groundwork. Although additional mechanisms may be required to provide the graded specifications required for precise interneuronal interactions, it is likely that the general mechanisms employed in simpler systems will be conserved in some form.


Cell Recognition Dictyostelium Discoideum Slime Mold Inductive Gradient Subunit Molecular Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barondes, S. H., 1970, Brain glycomacromolecules and interneuronal recognition, in: The Neurosciences, Second Study Program ( F. O. Schmitt, ed.), pp. 747–760, Rockefeller University Press, New York.Google Scholar
  2. Barondes, S. H., Rosen, S. D., Simpson, D. L., and Kafka, J. A., 1974, Agglutinins of formalinized erythrocytes: Changes in activity with development of Dictyostelium discoideum and embryonic chick brain, in: Dynamics of Degeneration and Growth in Neurons ( K. Fuxe, L. Olson, and Y. Zotterman, eds.), pp. 449–454, Pergamon Press, Oxford.Google Scholar
  3. Beug, H., Gerisch, G., Kampff, S., Riedel, V., and Cremer, G., 1970, Specific inhibition of cell contact formation in Dictyostelium by univalent antibodies, Exp. Cell Res. 63: 147.CrossRefGoogle Scholar
  4. Beug, H., Gerisch, G., and Müller, E., 1971, Cell dissociation: Univalent antibodies as a possible alternative to proteolytic enzymes, Science 173: 742.CrossRefGoogle Scholar
  5. Beug, H., Katz, F. E., Stein, A., and Gerisch, 1973a, Quantitation of membrane sites in aggregating Dictyostelium cells by use of tritiated univalent antibody, Proc. Natl. Acad. Sci. USA 70: 3150.CrossRefGoogle Scholar
  6. Beug, H., Katz, F. E., and Gerisch, G., 1973b, Dynamics of antigenic membrane sites relating to cell aggregation in Dictyostelium discoideum, J. Cell Biol. 56: 647.CrossRefGoogle Scholar
  7. Bohlool, B. B., and Schmidt, E. L., 1974, Lectins: A possible basis for specificity in the rhizobium—legume root nodule symbiosis, Science 185: 269.CrossRefGoogle Scholar
  8. Bonner, J. T., 1967, The Cellular Slime Molds, 2nd ed., Princeton University Press, Princeton, N.J.Google Scholar
  9. Bonner, J. T., and Adams, M. S., 1958, Cell mixtures of different species and strains of cellular slime moulds, J. Embryol. Exp. Morphol. 6: 346.Google Scholar
  10. Bonner, J. T., Hall, E. M., Noller, S., Oleson, F. B., Jr., and Roberts, A. B., 1972, Synthesis of cyclic AMP and phosphodiesterase in various species of cellular slime molds and its bearing on chemotaxis and differentiation, Dey. Biol. 29: 402.CrossRefGoogle Scholar
  11. Brown, R. C., Bass, H., and Coombs, J. P., 1975, Carbohydrate binding proteins involved in phagocytosis by Acanthamoeba, Nature (London) 254: 434.CrossRefGoogle Scholar
  12. Chang, C.-M., Reitherman, R. W., Rosen, S. D., and Barondes, S. H., 1975, Cell surface localization of discoidin, a developmentally regulated carbohydrate-binding protein from Dictyostelium discoideum, Exp. Cell Res. 95: 136.CrossRefGoogle Scholar
  13. Frazier, W. A., Rosen, S. D., Reitherman, R. W., and Barondes, S. H., 1975, Purification and comparison of two developmentally regulated lectins from Dictyostelium discoideum: Discoidin I and II, J. Biol. Chem. 250: 7714.Google Scholar
  14. Gerisch, G., 1968, Cell aggregation and differentiation in Dictyostelium, in: Current Topics in Developmental Biology, Vol. 3 ( A. Monroy and A. Moscona, eds.), pp. 157–197, Academic Press, New York.Google Scholar
  15. Gesner, B. M., and Thomas, L., 1966, Sialic acid binding sites: Role in hemagglutination by Mycoplasma galliseptium, Science 151: 590.CrossRefGoogle Scholar
  16. Gibbons, R. A., Jones, G. W., and Sellwood, R., 1975, An attempt to identify the intestinal receptor for the K88 adhesin by means of a haemagglutinin inhibition test using glycoproteins and fractions from sow colustrum, J. Gen. Microbiol. 86: 228.Google Scholar
  17. Hamblin, J., and Kent, S. P., 1973, Possible role of phytohaemagglutinin in Phaseolus vulgaris L., Nature (London) New Biol. 245: 28.CrossRefGoogle Scholar
  18. Humphreys, T., 1963, Chemical dissolution and in vitro reconstruction of sponge cell adhesions. I. Isolation and functional demonstration of the components involved, Dev. Biol. 8: 27.CrossRefGoogle Scholar
  19. Laver, W. G., 1973, The polypeptides of influenza, Advan. Virus Res. 18: 57.Google Scholar
  20. Lis, H., and Sharon, N., 1973, The biochemistry of plant lectins (phytohemagglutinins), Ann. Rev. Biochem. 42: 541.CrossRefGoogle Scholar
  21. Loomis, W. F., Jr., 1975, Dictyostelium discoideum, a Developmental System, Academic Press, New York.Google Scholar
  22. Moscona, A. A., 1963, Studies on cell aggregation: Demonstrations of materials with selective cell-binding activity, Proc. Natl. Acad. Sci. USA 49: 742.CrossRefGoogle Scholar
  23. Nicolson, G. L., 1974, The interaction of lectins with animal cell surfaces, Int. Rev. Cytol. 39: 89.CrossRefGoogle Scholar
  24. Rakic, P., 1974, Mode of cell migration to the superficial layers of fetal monkey neocortex, J. Comp. Neurol. 145: 61.CrossRefGoogle Scholar
  25. Rambourg, A., 1971, Morphological and histochemical aspects of glycoproteins at the surface of animal cells, Int. Rev. Cytol. 31: 57.CrossRefGoogle Scholar
  26. Raper, K. B., and Thom, C., 1941, Interspecific mixtures in the Dictyosteliaceae, Am. J. Bot. 28: 69.CrossRefGoogle Scholar
  27. Reitherman, R. W., Rosen, S. D., and Barondes, S. H., 1974, Lectin purification using formalinized erythrocytes as a general affinity adsorbent, Nature (London) 248: 599.CrossRefGoogle Scholar
  28. Reitherman, R. W., Rosen, S. D., Frazier, W. A., and Barondes, S. H., 1975, Cell surface species-specific high affinity receptors for discoidin: Developmental regulation in D. discoideum, Proc. Natl. Acad. Sci. USA 72: 3541.CrossRefGoogle Scholar
  29. Rosen, S. D., 1972, A possible assay for intercellular adhesion molecules, Ph.D. thesis, Cornell University.Google Scholar
  30. Rosen, S. D., Kafka, J., Simpson, D. L., and Barondes, S. H., 1973, Developmentally-regulated, carbohydrate-binding protein in Dictyostelium discoideum, Proc. Natl. Acad. Sci. USA 70: 2554.CrossRefGoogle Scholar
  31. Rosen, S. D., Simpson, D. L., Rose, J. E., and Barondes, S. H., 1974, Carbohydrate-binding protein from Polysphondylium pallidum implicated in intercellular adhesion, Nature (London) 252: 128.CrossRefGoogle Scholar
  32. Rosen, S. D., Reitherman, R. W., and Barondes, S. H., 1975, Distinct lectin activities from six species of cellular slime molds, Exp. Cell Res. 95: 159.CrossRefGoogle Scholar
  33. Schulze, I. T., 1973, Structure of the influenza virion, Advan. Virus Res. 18: 1.CrossRefGoogle Scholar
  34. Shaffer, B. M., 1957, Properties of slime-mould amoebae of significance for aggregation, Q. J. Microsc. Sci. 98: 377.Google Scholar
  35. Sidman, R. L., 1974, Contact interaction among developing mammalian brain cells, in: The Cell Surface in Development (A. A. Moscona, ed.), pp. 221–253, Wiley, New York.Google Scholar
  36. Simpson, D. L., Rosen, S. D., and Barondes, S. H., 1974, Discoidin, a developmentally regulated carbohydrate-binding protein from Dictyostelium discoideum: Purification and characterization, Biochemistry 13: 3487.CrossRefGoogle Scholar
  37. Simpson, D. L., Rosen, S. D., and Barondes, S. H., 1975, Pallidin: Purification and characterization of a carbohydrate-binding protein from Polysphondylium pallidum implicated in intercellular adhesion, Biochim. Biophys. Acta 412: 109.Google Scholar
  38. Singer, S. J., 1974, The molecular organization of membranes, Annu. Rev. Biochem. 43: 805.CrossRefGoogle Scholar
  39. Sperry, R. W., 1963, Chemoaffinity in the orderly growth of nerve fiber patterns and connections, Proc. Natl. Acad. Sci. USA 50: 703.CrossRefGoogle Scholar
  40. Sperry, R. W., 1965, Embryogenesis of behavioral nerve nets, in: Organogenesis ( R. L. DeHaan and H. Ursprung, ed.), pp. 161–186, Holt, Rinehart and Winston, New York.Google Scholar
  41. Sussman, M., 1975, The genesis of multicellular organization and the control of gene expression in D. discoideum, in: Progress in Molecular and Subcellular Biology, Vol. IV ( F. Hahn ed.), Springer, Berlin.Google Scholar
  42. Teichberg, V. I., Silman, I., Beitsch, D., and Resheff, D., 1975, A ß-D-galactoside binding protein from electric organ tissue of Electrophorus electricus, Proc. Natl. Acad. Sci. USA 72: 1383.CrossRefGoogle Scholar
  43. Tyler, A., 1946, An auto-antibody concept of cell structure, growth and differentiation, Growth 10: 7.Google Scholar
  44. Weiss, P., 1947, The problem of specificity in growth and development, Yale J. Biol. Med. 19: 235.Google Scholar
  45. Winzler, R. J., 1970, Carbohydrates in cell surfaces, Int. Rev. Cytol. 29: 77.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Samuel H. Barondes
    • 1
  • Steven D. Rosen
    • 1
  1. 1.Department of PsychiatryUniversity of California, San Diego, School of MedicineLa JollaUSA

Personalised recommendations