Skip to main content

Morphogenetic Role of Glycosaminoglycans (Acid Mucopolysaccharides) in Brain and Other Tissues

  • Chapter
Neuronal Recognition

Part of the book series: Current Topics in Neurobiology ((CTNB))

Abstract

Morphogenesis of an organ or tissue is a complex and specific series of events leading to a unique, functional organization of cellular and extracellular elements. Underlying these events are several types of cell behavior such as cell movement, recognition and adhesion, shape changes, mitosis, and death. Morphogenesis is usually accompanied by and necessary for cellular differentiation, in which the component cells undergo a series of distinctive metabolic and cytological changes that result in the synthesis or secretion of characteristic and functional cell products. Although morphogenesis and differentiation are not exact or discrete terms (they both involve metabolic, cytological, and behavioral changes), it is the behavioral aspects that are emphasized when morphogenesis is spoken of and the metabolic and cytological changes that are emphasized when differentiation is spoken of.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anseth, A., 1961, Glycosaminoglycans in the developing corneal stroma, Expl. Eye Res. 1: 116.

    Google Scholar 

  • Arnott, S., Guss, J. M., Hukins, D. W., and Mathews, M. B., 1973, Mucopolysaccharides: Comparison of chondroitin sulfate conformations with those of related polyanions, Science 180: 743.

    Google Scholar 

  • Aronson, N. N., and Davidson, E. A., 1967a, Lysosomal hyaluronidase from rat liver. I. Preparations, J. Biol. Chem. 242: 437.

    Google Scholar 

  • Aronson, N. N., and Davidson, E. A., 1967b, Lysosomal hyaluronidase from rat liver. II. Properties, J. Biol. Chem. 242: 441.

    Google Scholar 

  • Ashhurst, D. E., and Costin, N. M., 1971, Insect mucosubstances. II. Mucosubstances of the central nervous system, Histochem. J. 3: 297.

    Google Scholar 

  • Atkins, E. D., Phelps, C. F., and Sheehan, J. K., 1972, The conformation of mucopolysaccharides: Hyaluronates, Biochem. J. 128: 1255.

    Google Scholar 

  • Atkins, E. D., Hardingham, T. E., Isaac, D. H., and Muir, H, 1974, X-ray fibre diffraction of cartilage proteoglycan aggregates containing hyaluronic acid, Biochem. J. 141: 919.

    Google Scholar 

  • Bernfield, M. R., 1970, Collagen synthesis during epithelio-mesenchymal interactions, Dep. Biol. 22: 213.

    Google Scholar 

  • Bemfield, M. R., and Banerjee, S. D., 1972, Acid mucopolysaccharide (glycosaminoglycan) at the epithelial-mesenchymal interface of mouse embryo salivary glands, J. Cell Biol. 52: 664.

    Google Scholar 

  • Bemfield, M. R., Banerjee, S. D., and Cohn, R. H., 1972, Dependence of salivary epithelial morphology and branching morphogenesis upon acid mucopolysaccharide-protein (proteoglycan) at the epithelial surface, J. Cell Biol. 52: 674.

    Google Scholar 

  • Bernfield, M. R., Cohn, R. H., and Banerjee, S. D., 1973, Glycosaminoglycans and epithelial organ formation, Am. Zool. 13: 1067.

    Google Scholar 

  • Bondareff, W., and Narotsky, R., 1972, Age changes in the neuronal microenvironment, Science 176: 1135.

    Google Scholar 

  • Bondareff, W., and Pysh, J. J., 1968, Distribution of the extracellular space during postnatal maturation of rat cerebral cortex, Anat. Rec. 160: 773.

    Google Scholar 

  • Bradbury, M. W., Villamil, M., and Kleiman, C. R., 1968, Extracellular fluid, ionic distribution and exchange in isolated frog brain, Am. J. Physiol. 214: 643.

    Google Scholar 

  • Breen, M., Weinstein, H. G., Johnson, R. L., Veis, A., and Marshall, R. T., 1970, Acidic glycosaminoglycans in human skin during fetal development and adult life, Biochim. Biophys. Acta 201: 54.

    Google Scholar 

  • Breen, M., Johnson, R. L., Sittig, R. A., Weinstein, H. G., and Veis, A., 1972, The acidic glycosaminoglycans in human fetal development and adult life: Cornea, sclera and skin, Connect. Tissue Res. 1: 291.

    Google Scholar 

  • Burger, M. M., and Martin, G. S., 1972, Agglutination of cells transformed by Rous sarcoma virus by wheat germ agglutinin and concanavalin A, Nature (London) New Biol. 237: 9.

    Google Scholar 

  • Chalkley, D. T., 1959, The cellular basis of limb regeneration, in: Regeneration in Vertebrates (C. S. Thornton, ed.), pp. 34–58, University of Chicago Press, Chicago. Clarris, B. J., and Fraser, J. R., 1968, On the pericellular zone of some mammalian cells ivitro, Exp. Cell Res. 49: 181.

    Google Scholar 

  • Cleland, R. L., 1970, Molecular weight distribution in hyaluronic acid, in: Chemistry and Molecular Biology of the Intercellular Matrix, Vol. 2 ( E. A. Balazs, ed.), pp. 733–742, Academic Press, New York.

    Google Scholar 

  • Comper, W. D., and Preston, B. N., 1974, Model connective tissue systems: A study of polyion-mobile ion and of excluded-volume interactions of proteoglycans, Biochem. J. 143: 1.

    Google Scholar 

  • Conrad, G. W., 1970, Collagen and mucopolysaccharide biosynthesis in the developing chick cornea, Dev. Biol. 21: 292.

    Google Scholar 

  • Coulombre, A. J., and Coulombre, J. L., 1958, Corneal development. I. Corneal transparency, J. Cell. Comp. Physiol. 51: 1.

    Google Scholar 

  • Coulombre, A. J., and Coulombre, J. L., 1964, Corneal development. III. The role of the thyroid in dehydration and the development of transparency, Exp. Eye Res. 3: 105.

    Google Scholar 

  • Custod, J. T., and Young, I. J., 1968, Cat brain mucopolysaccharides and their in vivo hyaluronidase digestion, J. Neurochem. 15: 809.

    Google Scholar 

  • Darzynkiewicz, A., and Balazs, E. A., 1971, Effect of connective tissue intercellular matrix on lymphocyte stimulation. I. Suppresion of lymphocyte stimulation by hyaluronic acid, Exp. Cell Res. 66: 113.

    Google Scholar 

  • Davidson, E. A., 1970, Glycoprotein and mucopolysaccharide hydrolysis, in: Metabolic Conjugation and Metabolic Hydrolysis, Vol. 1, ( W. H. Fishman, ed.), pp. 327–353, Academic Press, New York.

    Google Scholar 

  • Dea, I. C., Moorhouse, R., Rees, D. A., Amott, S., Guss, J. M., and Balazs, E. A., 1973, Hyaluronic acid: A novel, double helical molecule, Science 179: 560.

    Google Scholar 

  • DeLuca, S., Richmond, M. E., and Silbert, J. E., 1973, Biosynthesis of chondroitin sulfate: Sulfation of the polysaccharide chain, Biochemistry 12: 3911.

    Google Scholar 

  • DeSouza, S. W., and Dobbing, J., 1971, Cerebral edema in developing brain. 1. Normal water and cation content in developing rat brain and postmortem changes,Exp. Neurol. 32: 431.

    Google Scholar 

  • Dingle, J. T., and Webb, M., 1965, Mucopolysaccharide metabolism in tissue culture, in: Cells and Tissues in Culture, Vol. 1 ( E. N. Willmer, ed.), pp. 353–396, Academic Press, New York.

    Google Scholar 

  • Dingle, J. T., Barrett, A. J., and Weston, P. D., 1971, Cathepsin D—Characteristics of immunoinhibition and the confirmation of a role in cartilage breakdown, Biochem. J. 123: 1.

    Google Scholar 

  • Disalvo, J., and Schubert, M., 1966, Interaction during fibril formation of soluble collagen with cartilage protein polysaccharide, Biopolymers 4: 247.

    Google Scholar 

  • Dorner, R. W., 1968, Changes in glycosaminoglycan composition associated with maturation of regenerating rabbit tendon, Arch. Biochem. Biophys. 128: 34.

    Google Scholar 

  • Dunstone, J. R., 1962, Ion-exchange reactions between acid mucopolysaccharides and various cations, Biochem. J. 85: 336.

    Google Scholar 

  • Eisenstein, R., Larsson, S., Sorgente, N., and Kuettner, K. E., 1973, Collagen-proteoglycan relationships in epiphyseal cartilage, Am. J. Pathol. 73: 443.

    Google Scholar 

  • Ellison, M. L., and Lash, J. W., 1971, Environmental enhancement of in vitro chondrogenesis, Dev. Biol. 26: 486.

    Google Scholar 

  • Fessier, J., 1960, A structural function of mucopolysaccharide in connective tissue, Biochem. J. 76: 124.

    Google Scholar 

  • Finch, R. A., and Zwilling, E., 1971, Culture stability of morphogenetic properties of chick limb-bud mesoderm, J. Exp. Zool. 176: 397.

    Google Scholar 

  • Fransson, L. A., 1970, Structure and metabolism of the proteoglycans of dermatan sulfate, in: Chemistry and Molecular Biology of the Intercellular Matrix, Vol. 2 ( E. A. Balazs, ed.), pp. 823–842, Academic Press, New York.

    Google Scholar 

  • Fraser, J. R., Clarris, F. J., and Kont, L. A., 1970, The morphology and motility of human synovial cells and their pericellular gels: A time-lapse microcinematographic study, Aust. J. Biol. Sci. 23: 1297.

    Google Scholar 

  • Gerber, B. R., and Schubert, M., 1964, The exclusion of large solutes by cartilage protein polysaccaride, Biopolymers 2: 259.

    Google Scholar 

  • Goetinck, P. F., Pennypacker, J. P., and Royal, P. D., 1974, Proteochondroitin sulfate synthesis and chondrogenic expression, Exp. Cell Res. 87: 241.

    Google Scholar 

  • Goggins, J. F., Johnson, G. S., and Pastan, I., 1972, The effect of dibutyryl cyclic adenosine monophosphate on synthesis of sulfated acid mucopolysaccharides by transformed cells, J. Biol. Chem. 247: 5759.

    Google Scholar 

  • Gona, A. G., 1973, Effects of thyroxine, thyrotropin, prolactin, and growth hormone on the maturation of the frog cerebellum, Exp. Neurol. 38: 494.

    Google Scholar 

  • Gordon, J. S., and Lash, J. W., 1974, In vitro chondrogenesis and cell viability, Dev. Biol. 36: 88.

    Google Scholar 

  • Gregory, J. D., 1973, Multiple aggregation factors in cartilage proteoglycan, Biochem. J. 133: 383.

    Google Scholar 

  • Grillo, H. C., Lapiere, C. M., Dresden, M. H., and Gross, J., 1968, Collagenolytic activity in regenerating forelimbs of the adult newt (Triturus viridescens), Dev. Biol. 17: 571.

    Google Scholar 

  • Grobstein, C., 1967, Mechanisms of organogenetic tissue interaction, Natl. Cancer Inst. Monogr. 26: 279.

    Google Scholar 

  • Grobstein, C., and Cohen, J., 1965, Collagenase: Effect on the morphogenesis of embryonic salivary epithelium in vitro, Science 150: 626.

    Google Scholar 

  • Hamburger, F., and Hamilton, H. L., 1951, A series of normal stages in the development of the chick embryo, J. Morphol. 88: 49.

    Google Scholar 

  • Hamburgh, M., Mendoza, L. A., Burkart, J. F., and Weil, F., 1971, in: Hormones in Development (M. Hamburgh and E. J. Barrington, eds.), pp. 403–415, AppletonCentury-Crofts, New York.

    Google Scholar 

  • Hanaway, J., 1967, Formation and différentiation of the external granular layer of the chick cerebellum, J. Comp. Neurol. 131: 1.

    Google Scholar 

  • Hardingham, T. E., and Muir, H., 1972, The specific interaction of hyaluronic acid with cartilage proteoglycans, Biochim. Biophys. Acta 279: 401.

    Google Scholar 

  • Hardingham, T. E., and Muir, H., 1974, Hyaluronic acid in cartilage and proteoglycan aggregation, Biochem. J. 139: 565

    Google Scholar 

  • Hascall, V. C., and Heinegard, D., 1974a, Aggregation of cartilage proteoglycans. I. The role of hyaluronic acid, J. Biol. Chem. 249: 4232.

    Google Scholar 

  • Hascall, V. C., and Heinegard, D., 1974b, Aggregation of cartilage proteoglycans. II. Oligosaccharide competitors of the proteoglycan-hyaluronic acid interaction, J. Biol. Chem. 249: 4242.

    Google Scholar 

  • Hascall, V. C., and Heinegard, D., 1975, The structure of cartilage proteoglycans, in: Extracellular Matrix Influences on Gene Expression ( H. C. Slavkin and R. Greulich, eds.), pp. 423–434, Academic Press, New York.

    Google Scholar 

  • Hascall, V. C., and Sajdera, S. W., 1970, Physical properties and polydispersity of proteoglycan from bovine nasal cartilage, J. Biol. Chem. 245: 4920.

    Google Scholar 

  • Hay, E. D., 1966a, Regeneration, Holt, Rinehart and Winston, New York.

    Google Scholar 

  • Hay, E. D., 1966b, Embryologic origin of tissues, in: Histology ( R. O. Greep, ed.), pp. 5673, McGraw-Hill, New York.

    Google Scholar 

  • Hay, E. D., 1968, Dedifferentiation and metaplasia in vertebrate and invertebrate regeneration, in: Stability of the Differentiated State ( H. Ursprung, ed.), pp. 85–108, Springer, New York.

    Google Scholar 

  • Hay, E. D., 1970, Regeneration of muscle in the amputated amphibian limb, in: Regeneration of Striated Muscle, and Myogenesis ( A. Mauro, S. A., Shafiq, and A. T. Milhorat. eds), pp. 3–24, Excerpta Medica, Amsterdam.

    Google Scholar 

  • Hay, E. D., 1973, Origin and role of collagen in the embryo, Am. Zool. 13: 1085.

    Google Scholar 

  • Hay, E. D., and Meier, S., 1974, Glycosaminoglycan synthesis by embryonic inductors: Neural tube, notochord, and lens, J. Cell Biol. 62: 889.

    Google Scholar 

  • Hay, E. D., and Revel, J. P., 1969, Fine Structure of the Developing Avian Cornea (A. Wolsky and P. S. Chem, eds.), Vol. I of Monographs in Developmental Biology, Karger, Basel.

    Google Scholar 

  • Heersche, J. N., Marcus, R., and Aurbach, G. D., 1974, Calcitonin and the formation of 3’, 5’-AMP in bone and kidney, Endocrinology 94: 241.

    Google Scholar 

  • Heinegard, D., and Hascall, V. C., 1974, Aggregation of cartilage proteoglycans. III. Characteristics of the proteins isolated from trypsin digests of aggregates, J. Biol. Chem. 249: 4250.

    Google Scholar 

  • Hirano, S., and Meyer, K., 1971, Enzymatic degradation of corneal and cartilagenous keratosulfates, Biochem. Biophys. Res. Commun. 44: 1371.

    Google Scholar 

  • Hopwood, J. J., Fitch, F. W., and Dorfman, A., 1974, Hyaluronic acid synthesis in a cell- free system from rat fibrosarcoma, Biochem. Biophys. Res. Commun. 61: 583.

    Google Scholar 

  • Hovingh, P., and Linker, A., 1970, The enzymatic degradation of heparin and heparitin sulfate. III. Purification of a heparitinase and a heparinase from flavobacteria, J. Biol. Chem. 245: 6170.

    Google Scholar 

  • Huffer, E. S., 1970, Glycosaminoglycans in the cartilage of developing chick embryo limbs, Calc. Tissue Res. 6: 55.

    Google Scholar 

  • Immers, J., 1961, Comparative study of the localization of incorporated “C-labeled amino acids and 35504 in the sea urchin ovary, egg and embryo, Exp. Cell Res. 24: 356.

    Google Scholar 

  • Immers, J., and Runnstrom, J., 1965, Further studies of the effects of deprivation of sulfate on the early development of the sea urchin Paracentrosus lividus, J. Embryol. Exp. Morphol. 14: 289.

    Google Scholar 

  • Ishimoto, N., Temin, H. M., and Strominger, J. L., 1966, Studies of carcinogenesis by avian sarcoma viruses. II. Virus-induced increase in hyaluronic acid synthetase in chicken fibroblasts, J. Biol. Chem. 241: 2052.

    Google Scholar 

  • Iwata, H., and Urist, M. R., 1973, Hyaluronic acid production and removal during bone morphogenesis in implants of bone matrix in rats, Clin. Orthop. Rel. Res. 90: 236.

    Google Scholar 

  • Jacobson, M., 1970, Developmental Neurobiology, Holt, Rinehart and Winston, New York. Kallman, F., and Grobstein, C., 1965, Source of collagen at epitheliomesenchymal interfaces during inductive interaction, Dev. Biol. 11: 169.

    Google Scholar 

  • Karp, G. C., and Solursh, M., 1974, Acid mucopolysaccharide metabolism, the cell surface, and primary mesenchyme cell activity in the sea urchin embryo, Dev. Biol. 41: 110.

    Google Scholar 

  • Katchalsky, A., 1964, Polyelectrolytes and their biological interactions, Biophys. J. Suppl. 4: 9.

    Google Scholar 

  • Kempson, G. E., Muir, H., Swanson, S. A., and Freeman, M. A., 1970, Correlations between stiffness and the chemical constituents of cartilage on the human femoral head, Biochim. Biophys. Acta 215: 70.

    Google Scholar 

  • Kinoshita, S., 1969, Periodical release of heparin-like polysaccharide within cytoplasm during cleavage of sea urchin egg, Exp. Cell Res. 56: 39.

    Google Scholar 

  • Kojima, K., and Yamagata, T., 1971, Glycosaminoglycans and electrokinetic behavior of rat ascites hepatoma cells, Exp. Cell Res. 67: 142.

    Google Scholar 

  • Kollros, J. J., and McMurray, V. M., 1956, The mesencephalic V nucleus in anurans. II. The influence of thyroid hormone on cell size and cell number, J. Exp. Zool. 131: 1.

    Google Scholar 

  • Konigsberg, I. R., 1970, The relationship of collagen to the clonal development of embryonic skeletal muscle, in: Chemistry and Molecular Biology of the Intercellular Matrix, Vol. 3 ( E. A. Balazs, ed.), pp. 1779–1810, Academic Press, New York.

    Google Scholar 

  • Kosher, R. A., and Searls, R. L., 1973, Sulfated mucopolysaccharide synthesis during the development of Rana pipiens, Dev. Biol. 32: 50.

    Google Scholar 

  • Kosher, R. A., Lash, J. W., and Minor, R. R., 1973, Environment enhancement of in vitro chondrogenesis. IV. Stimulation of somite chondrogenesis by exogenous chondromucoprotein, Dev. Biol. 35: 210.

    Google Scholar 

  • Kraemer, P. M., 1971a, Heparan sulfates of cultured cells. I. Membrane associated and cell-sap species in Chinese hamster cells, Biochemistry 10: 1437.

    Google Scholar 

  • Kraemer, P. M., 1971b, Heparan sulfates of cultured cells. II. Acid-soluble and precipitable species of different cell lines, Biochemistry 10: 1445.

    Google Scholar 

  • Kraemer, P. M., and Tobey, R. A., 1972, Cell-cycle dependent desquamation of heparan sulfate from the cell surface, J. Cell Biol. 55: 713.

    Google Scholar 

  • Krusius, T., Finne, J., Karkkainen, J., and Jamefelt, J., 1974, Neutral and acidic glycopeptides in adult and developing rat brain, Biochim. Biophys. Acta 365: 80.

    Google Scholar 

  • Kvist, T. N., and Finnegan, C. V., 1970a, The distribution of glycosaminoglycans in the axial region of the developing chick embryo. I. Histochemical analysis, J. Exp. Zool. 175: 221.

    Google Scholar 

  • Kvist, T. N., and Finnegan, C. V., 1970b, The distribution of glycosaminoglycans in the axial region of the developing chick embryo. II. Biochemical analysis, J. Exp. Zool. 175: 241.

    Google Scholar 

  • Lash, J. W., 1968, Chondrogenesis: Genotypic and phenotypic expression. J. Cell. Physiol. 72:Suppl. 1, 35–46.

    Google Scholar 

  • Lash. J. W., and Kosher, R. A., 1975, Perinotochordal proteoglycans and somite chondrogenesis, in: Extracellular Matrix Influences on Gene Expression ( H. C. Slavkin and R. Greulich, eds.), pp. 671–676, Academic Press, New York.

    Google Scholar 

  • Lash, J., Holtzer, S., and Holtzer, H., 1957, An experimental analysis of the development of the spinal column, Exp. Cell Res. 13: 292.

    Google Scholar 

  • Laurent, T. C., 1964, The interaction between polysaccharides and other macromolecules. 9. The exclusion of molecules from hyaluronic acid gels and solutions, Biochem. J. 93: 106.

    Google Scholar 

  • Laurent, T. C., 1966, In vitro studies on the transport of macromolecules through the connective tissue, Fed. Proc. 25: 1128.

    Google Scholar 

  • Laurent, T. C., 1970, Structure of hyaluronic acid, in: Chemistry and Molecular Biology of the Intercellular Matrix, Vol. 2 ( E. A. Balazs, ed.), pp. 703–732. Academic Press, New York.

    Google Scholar 

  • Laurent, T. C., and Ogston, A. G., 1963, The interaction between polysaccharides and other macromolecules. 4. The osmotic pressure of mixtures of serum albumin and hyaluronic acid, Biochem. J. 89: 249.

    Google Scholar 

  • Laurent, T. C., Ryan, M., and Pietruszkiewicz, A., 1960, Fractionation of hyaluronic acid: The polydispersity of hyaluronic acid from the bovine vitreous body, Biochim. Biophys. Acta 42: 476.

    Google Scholar 

  • Laurent, T. C., Bjork, I., Pietruskiewicz, A., and Persson, H., 1963, On the interaction between polysaccarides and other macromolecules. II. The transport of globular particles through hyaluronic acid solutions, Biochim. Biophys. Acta 78: 351.

    Google Scholar 

  • LaVail, J. H., and Cowan, W. M., 1971a, The development of the chick optic tectum. I. Normal morphology and cytoarchitectonic development, Brain Res. 28: 391.

    Google Scholar 

  • LaVail, J. H., and Cowan, W. M., 1971b, The development of the chick optic tectum. II. Autoradiographic studies, Brain Res. 28: 421.

    Google Scholar 

  • LeGrand, J., 1971, Comparative effects of thyroid deficiency and undernutrition on maturation of the nervous system and particularly on myelination in the young rat, in: Hormones in Development ( M. Hamburgh and E. J., Barrington, eds.), pp. 381–390 Appleton-Century-Crofts, New York.

    Google Scholar 

  • Levey, G. S., and Epstein, S. E., 1969, Myocardial adenylcyclase: Activation by thyroid hormone and evidence for two adenyl cyclase systems, J. Clin. Invest. 48: 1663.

    Google Scholar 

  • Levitt, D., and Dorfman, A., 1974, Concepts and mechanisms of cartilage differentiation, in: Current Topics in Development Biology, Vol. 8 ( A. Moscona, ed.), pp. 103–149, Academic Press, New York.

    Google Scholar 

  • Lindahl, U., 1970, Structure of heparin, heparan sulfate and their proteoglycans, in: Chemistry and Molecular Biology of the Intercellular Matrix, Vol. 2 ( E. A. Balazs, ed.), pp. 943–960, Academic Press, New York.

    Google Scholar 

  • Linsenmayer, T. F., 1974, Temporal and spatial transitions in collagen types during embryonic chick limb development. II. Comparison of the embryonic cartilage collagen molecule with that from adult cartilage, Dev. Biol. 40: 372.

    Google Scholar 

  • Linsenmayer, T. F., Trelstad, R. L., Toole, B. P., and Gross, J., 1973a, The collagen of osteogenic cartilage in the embryonic chick, Biochem. Biophys. Res. Commun. 52: 870.

    Google Scholar 

  • Linsenmayer, T. F., Toole, B. P., and Trelstad, R. L., 1973b, Temporal and spatial transitions in collagen types during embryonic chick limb development, Dev. Biol. 35: 232.

    Google Scholar 

  • Lippman, M., 1968, Glycosaminoglycans and cell division, in: Epithelial—Mesenchymal Interactions ( R. Fleischmajer and R. E. Billingham, eds.), pp. 208–229, Williams and Wilkins, Baltimore.

    Google Scholar 

  • Lipson, M. J., Cerskus, R. A., and Silbert, J. E., 1971, Glycosaminoglycans and glycosaminoglycan degrading enzyme of Rana catesbeiana back skin during late stages of metamorphosis, Dev. Biol. 25: 198.

    Google Scholar 

  • Loewi, G., and Meyer, K., 1958, The acid mucopolysaccharides of embryonic skin, Biochim. Biophys. Acta 27: 453.

    Google Scholar 

  • Lowther, D. A., Preston, B. N., and Meyer, F. A., 1970, Isolation and properties of chondroitin sulphates from bovine heart valves, Biochem. J. 118: 595.

    Google Scholar 

  • Makita, A., and Shimojo, H., 1973, Polysaccarides of SV40-transformed green monkey kidney cells, Biochim. Biophys. Acta 304: 571.

    Google Scholar 

  • Manasek, F. J., Reid, M., Vinson, W., Seyer, J., and Johnson, R., 1973, Glycosaminoglycan synthesis by the early embryonic chick heart, Dev. Biol. 35: 332.

    Google Scholar 

  • Marcus, R., 1975, Cyclic nucleotide phosphodiesterase from bone: Characterization of the enyzyme and studies of inhibition by thyroid hormones, Endocrinology 96: 400.

    Google Scholar 

  • Margolis, R. U., 1967, Acid mucopolysaccharides and proteins of bovine whole brain

    Google Scholar 

  • Margolis, R. U., and Atherton, D. M., 1972, The heparan sulfate of rat brain, Biochim. Biophys. Acta 273: 368.

    Google Scholar 

  • Margolis, R. U., and Margolis, R. K., 1974, Distribution and metabolism of mucopolysaccharides and glycoproteins in neuronal perikarya, astrocytes and oligodendroglia, Biochemistry 13: 2849.

    Google Scholar 

  • Margolis, R. U., Margolis, R. K., Chang, L. B., and Preti, C., 1975, Glycosaminoglycans of brain during development, Biochemistry 41: 85.

    Google Scholar 

  • Markwald, R. R., and Adams-Smith, W. N., 1972, Distribution of mucosubstances in the developing rat heart, J. Histochem. Cytochem. 20: 896.

    Google Scholar 

  • Martin, T. J., Harris, G. S., Melick, R. A., and Fraser, J. R., 1969, Effect of calcitonin on glycosaminoglycan synthesis of embryo calf bone cells in vitro, Experientia 25: 375.

    Google Scholar 

  • Mathews, M. B., 1965, The interaction of collagen and acid mucopolysaccharides: A model for connective tissue, Biochem. J. 96: 710.

    Google Scholar 

  • Mathews, M. B., and Decker, L., 1968, The effect of acid mucopolysaccarides and acid mucopolysaccharide-proteins on fibril formation from collagen solutions, Biochem. J. 109: 517.

    Google Scholar 

  • Maurer, P. H., and Hudack, S. S., 1952, Isolation of hyaluronic acid from callus tissue during early healing, Arch. Biochem. 38: 49.

    Google Scholar 

  • Medoff, J., 1967, Enzymatic events during cartilage differentiation in the chick embryonic limb bud, Dev. Biol. 16: 118.

    Google Scholar 

  • Meier, S., and Hay, E. D., 1973, Synthesis of sulfated glycosaminoglycans by embryonic corneal epithelium, Dev. Biol. 35: 318.

    Google Scholar 

  • Meier, S., and Hay, E. D., 1974, Stimulation of extracellular matrix synthesis in the developing cornea by glycosaminoglycans, Proc. Natl. Acad. Sci. USA 71: 2310.

    Google Scholar 

  • Meier, S., and Solursh, M., 1973, Mediation of growth hormone-enhanced expression of the cartilage phenotype in vitro by the availability of the essential amino acid valine, Dev. Biol. 30: 290.

    Google Scholar 

  • Meyer, K., Hoffman, P., and Linker, A., 1960, Hyaluronidases, in: The Enzymes, Vol. 4 ( P. D. Boyer, H. Lardy, and K. Myrback, eds.), pp. 447–460, Academic Press, New York.

    Google Scholar 

  • Meyer, F. A., Preston, B. N., and Lowther, D. A., 1969, Isolation and properties of hyaluronic acid from bovine heart valves, Biochem. J. 113: 559.

    Google Scholar 

  • Meyer, F. A., Comper, W. D., and Preston, B. N., 1971, Model connective tissues systems: A physical study of gelatin gels containing proteoglycans, Biopolymers 10: 1351.

    Google Scholar 

  • Minns, R. J., Soden, P. D., and Jackson, D. S., 1973, The role of the fibrous components and ground substance in the mechanical properties of biological tissues: A preliminary investigation, J. Biomech. 6: 153.

    Google Scholar 

  • Morris, C. C., 1960, Quantitative studies on the production of acid mucopolysaccharides by replicate cell cultures of rat fibroblasts, Ann. N.Y. Acad. Sci. 86: 878.

    Google Scholar 

  • Morris, C. C., and Godman, G. C., 1960, Production of acid mucopolysaccharides by fibroblasts in cell cultures, Nature (London) 188: 407.

    Google Scholar 

  • Moscatelli, D., and Rubin, H., 1975, Increased hyaluronic acid production on stimulation of DNA synthesis in chick embryo fibroblasts, Nature (London) 254: 65.

    Google Scholar 

  • Moscona, A. A., 1960, Patterns and mechanisms of tissue reconstruction from dissociated cells, in: Developing Cell Systems and Their Control ( D. Rudnick, ed.), pp. 45–70, Ronald Press, New York.

    Google Scholar 

  • Moscona, A. A., 1961, Rotation-mediated histogenetic aggregation of dissociated cells: A quantifiable approach to cell interactions in vitro, Exp. Cell Res. 22: 455.

    Google Scholar 

  • Moskowitz, J., and Fain, J. N., 1970, Stimulation by growth hormone and dexamethasone of labelled cyclic adenosine 3’,5’-monophosphate accumulation by white fat cells, J. Biol. Chem. 245: 1101.

    Google Scholar 

  • Muir, H., 1969, The structure and metabolism of mucopolysaccharides (glycosaminoglycans) and the problem of the mucopolysaccharidoses, Am. J. Med. 47: 673.

    Google Scholar 

  • Mustafa, M., and Kamat, D. N., 1973, Mucopolysaccharide histochemistry of Musca domestica. VII. The brain, Acta Histochem. 45: 254.

    Google Scholar 

  • Nakao, K., and Bashey, R. I., 1972, Fine structure of collagen fibrils as revealed by ruthenium red, Exp. Mol. Pathol. 17: 6.

    Google Scholar 

  • Nanto, V., 1969, Electrophoretic analysis of acidic glycosaminoglycans and its application to the developing chick embryo, Ann. Acad. Sci. Fenn. Ser. AS (Medica) 144: 1.

    Google Scholar 

  • Nemeth-Csoka, M., 1970, Importance of sulphated acid mucopolysaccharides for fibrillogenesis in carrageenin granulomata of rats at different ages, Exp. Gerontol. 5: 67.

    Google Scholar 

  • Neufeld, E. F., 1974, The biochemical basis for mucopolysaccharidoses and mucolipidoses, in: Progress in Medical Genetics, Vol. 10 ( A. G. Steinberg and A. G. Beam, eds.), pp. 81–101, Grune and Stratton, New York.

    Google Scholar 

  • Nevis, A. H., and Collins, G. H., 1967, Electrical impedance and volume changes in brain during development, Brain Res. 5: 57.

    Google Scholar 

  • Nevo, Z., and Dorfman, A., 1972, Stimulation of chondromucoprotein synthesis in chondrocytes by extracellular chondromucoprotein, Proc. Natl. Acad. Sci. USA 69: 2069.

    Google Scholar 

  • Obrink, B., 1972, Isolation and partial characterization of a dermatan sulfate proteoglycan from pig skin, Biochim. Biophys. Acta 264: 354.

    Google Scholar 

  • Obrink, B., 1973a, A study of the interactions between monomeric tropocollagen and glycosaminoglycans, Eur. J. Biochem. 33: 387.

    Google Scholar 

  • Obrink, B., 1973b, The influence of glycosaminoglycans on the formation of fibers from monomeric tropocollagen in vitro, Eur. J. Bioch. 34: 129.

    Google Scholar 

  • Ogston, A. G., 1966, On water binding, Fed. Proc. 25: 986.

    Google Scholar 

  • Ogston, A. G., 1970, The biological functions of the glycosaminoglycans, in: Chemistry and Molecular Biology of the Intercellular Matrix, Vol. 3 (E. A. Balazs, ed.), pp. 12311240, Academic Press, New York.

    Google Scholar 

  • Ogston, A. G., and Phelps, C. F., 1961, The partition of solutes between buffer solutions and solutions containing hyaluronic acid, Biochem. J. 78: 827.

    Google Scholar 

  • Ogston, A. G., and Sherman, T. F., 1961, Effects of hyaluronic acid upon diffusion of solutes and flow of solvent, J. Physiol. (London) 156: 67.

    Google Scholar 

  • Ogston, A. G., and Stanier, J. E., 1953, The physiological function of hyaluronic acid in synovial fluid; viscous, elastic and lubricant properties, J. Physiol. (London) 119: 244.

    Google Scholar 

  • Ohya, T., and Kaneko, Y., 1970, Novel hyaluronidase from Streptomyces, Biochim. Biophys. Acta 198: 607.

    Google Scholar 

  • Palmoski, M. J., and Goetinck, P. F., 1972, Synthesis of proteochondroitin sulfate by normal, nanomelic and 5-bromodeoxyuridine-treated chondrocytes in cell culture, Proc. Natl. Acad. Sci. USA 69: 3385.

    Google Scholar 

  • Palmoski, M., Khosla, R., and Brandt, K., 1974, Small proteoglycans of cartilage: Confirmation of their presence by non-disruptive extraction, Biochim. Biophys. Acta 372: 171.

    Google Scholar 

  • Pawelek, J. M., 1969, Effects of thyroxine and low oxygen tension on chondrogenic expression in cell culture, De?). Biol. 19: 52.

    Google Scholar 

  • Pesetsky, I., 1966, The role of the thyroid in the development of Mauthner’s neuron: A karyometric study in thyroidectomized anuran larvae, Z. Zellforsch. 75:138. Pessac, B., and Defendi, V., 1972, Cell aggregation: Role of acid mucopolysaccharides, Science 175: 898.

    Google Scholar 

  • Podrazky, V., Steven, F. S., Jackson, D. S., Weiss, J. B., and Leibovich, S. J., 1971, Interaction of tropocollagen with protein polysaccharide complexes: An analysis of the ionic groups responsible for interaction, Biochim. Biophys. Acta 229: 690.

    Google Scholar 

  • Polansky, J., and Toole, B. P., 1975, unpublished results.

    Google Scholar 

  • Polansky, J., Toole, B. P., and Gross, J., 1974, Brain hyaluronidase: Changes in activity during chick development, Science 183: 862.

    Google Scholar 

  • Pratt, R. M., Larsen, M. A., and Johnston, M. C., 1975, Migration of cranial neural crest cells in a cell-free hyaluronate-rich matrix, Dev. Biol. 44: 298–305.

    Google Scholar 

  • Praus, R., and Brettschneider, I., 1970, Presence of a non-sulphated glucosaminoglycan in embryonic cornea, FEBS Lett. 6: 221.

    Google Scholar 

  • Praus, R., and Brettschneider, I., 1971, Glycosaminoglycans in the developing chicken cornea, Ophthalmol. Res. 2: 367.

    Google Scholar 

  • Preston, B. N., and Snowden, J. M., 1972, Model connective tissue systems: The effect of proteoglycans on the diffusional behavior of small non-electrolytes and microions, Biopolymers 11: 1627.

    Google Scholar 

  • Preston, B. N., Davies, M., and Ogston, A. G., 1965, The composition and physicochemical properties of hyaluronic acids prepared from ox synovial fluid and from a case of mesothelioma, Biochem. J. 96: 449.

    Google Scholar 

  • Quintarelli, G., Vocaturo, A., Bellocci, M., Roden, L., Iffolito, E., and Baker, J. R., 1974, Preliminary ultrastructural demonstration of hyaluronic acid-proteoglycan interaction in cartilage matrix, Am. J. Anat. 140: 433.

    Google Scholar 

  • Reid, T., and Flint, M. H., 1974, Changes in glycosaminoglycan content of healing rabbit tendon, J. Embryol. Exp. Morphol. 31: 489.

    Google Scholar 

  • Rienits, K. G., 1960, The acid mucopolysaccharides of the sexual skin of apes and monkeys, Biochem. J. 74: 27.

    Google Scholar 

  • Robinson, H. C., Telser, A., and Dorfman, A., 1966, Studies on biosynthesis of the linkage region of chondroitin sulfate-protein complex, Proc. Natl. Acad. Sci. 56: 1859.

    Google Scholar 

  • Roblin, R., Albert, S. O., Gelb, N. A., and Black, P. H., 1975, Cell surface changes correlated with density-dependent growth inhibition: Glycosaminoglycan metabolism in 3T3, SV3T3, and Con A selected revertant cells, Biochemistry 14: 347.

    Google Scholar 

  • Roden, L., 1970a, The structure and metabolism of the proteoglycans of chondroitin sulfates and keratan sulfate, in: Chemistry and Molecular Biology of the Intercellular Matrix Vol. 2 ( E. A. Balazs, ed.), pp. 797–821, Academic Press, New York.

    Google Scholar 

  • Roden, L., 1970b, Biosynthesis of acidic glycosaminoglycans (mucopolysaccharides), in: Metabolic Conjugation and Metabolic Hydrolysis, Vol. 2 ( W. H. Fishman, ed.), pp. 345–442, Academic Press, New York.

    Google Scholar 

  • Rosenberg, L., Hellmann, W., and Kleinschmidt, A. K., 1970, Macromolecular models of protein polysaccarides from bovine nasal cartilage based on electron microscopic studies, J. Biol. Chem. 245: 4123.

    Google Scholar 

  • Saito, H. Yamagata, T., and Suzuki, S., 1968, Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfates, J. Biol. Chem. 243: 1536.

    Google Scholar 

  • Sajdera, S. W., and Hascall, V. C., 1969, Proteinpolysaccharide complex from bovine nasal cartilage: A comparison of low and high shear extraction procedures, J. Biol. Chem. 244: 77.

    Google Scholar 

  • Sajdera, S. W., Hascall, V. C., Gregory, J. D., and Dziewiatkowski, D. D., 1970, The proteoglycans of bovine nasal cartilage: Structure of the aggregate, in: Chemistry and Molecular Biology of the Intercellular Matrix, Vol. 2 ( E. A. Balazs, ed.), pp. 851–858, Academic Press, New York.

    Google Scholar 

  • Samuels, H. H., and Tsai, J. S., 1973, Thyroid hormone action in cell culture: Demonstration of nuclear receptors in intact cells and isolated nuclei, Proc. Natl. Acad. Sci. 70: 3488.

    Google Scholar 

  • Sapolsky, A. I., Howell, D. S., and Woessner, J. F., 1974, Neutral proteases and cathepsin D in human articular cartilage, J. Clin. Invest. 53: 1044.

    Google Scholar 

  • Satoh, C., Duff, R., Rapp, F., and Davidson, E. A., 1973, Production of mucopolysaccharides by normal and transformed cells, Proc. Natl. Acad. Sci. 70: 54.

    Google Scholar 

  • Schacter, L. P., 1970, Effect of conditioned media on differentiation in mass cultures of chick limb bud cells. I. Mophological effects, Exp. Cell Res. 63: 19.

    Google Scholar 

  • Schiller, S., Slover, G. A., and Dorfman, A., 1962, Effect of the thyroid gland on metabolism of acid mucopolysaccharides in skin, Biochim. Biophys. Acta 58: 27.

    Google Scholar 

  • Schubert, M., and Hamerman, D., 1964, The functioning of the diffuse macromolecules of joints, Bull. Rheum. Dis. 14: 345.

    Google Scholar 

  • Schubert, M., and Hammerman, D., 1968, A Primer on Connective Tissue Biochemistry, Lea and Febiger, Philadelphia.

    Google Scholar 

  • Schwartz, N. B., Roden, L., and Dorfman, A., 1974, Biosynthesis of chondroitin sulfate: Interaction between xylosyltransferase and galactosyltransferase, Biochem. Biophys. Res. Commun. 56: 717.

    Google Scholar 

  • Schwartz, N. B., Dorfman, A., and Roden, L., 1975, Role of enzyme—enzyme interactions in the organization of multi—enzyme systems, in: Extracellular Matrix Influences on Gene Expression ( H. C. Slavkin and R. Greulich, eds.), pp. 197–208, Academic Press, New York.

    Google Scholar 

  • Scott, J. E., 1968, Ion binding in solutions containing acid mucopolysaccharides, in: The Chemical Physiology of Mucopolysaccharides ( G. Quintarelli, ed.), pp. 171–187, Little, Brown, Boston,.

    Google Scholar 

  • Searls, R. L., 1965, An autoradiographic study of the uptake of S’-sulfate during the differentiation of limb bud cartilage, Dep. Biol. 11: 155.

    Google Scholar 

  • Searls, R. L., and Janners, M. Y., 1969, The stabilization of cartilage properties in the cartilage-forming mesenchyme of the embryonic chick limb, J. Exp. Zool. 170: 365.

    Google Scholar 

  • Serafini-Fracassini, A., Wells, P. J., and Smith, J. W., 1970, in: Chemistry and Molecular Biology of the Intercellular Matrix, Vol. 2 (E. A. Balazs, ed.), pp. 1201–1215, Academic Press, New York.

    Google Scholar 

  • Sidman, R. L., and Rakic, P., 1973, Neuronal migration with special reference to developing human brain: A review, Brain Res. 62: 1.

    Google Scholar 

  • Silbert, J. E., and DeLuca, S., 1970, Degradation of glycosaminoglycans by tadpole tissue: Differences in activity toward chondroitin 4-sulfate and chondroitin 6-sulfate, J. Biol. Chem. 245: 1506.

    Google Scholar 

  • Silpananta, P., Dunstone, J. R., and Ogston, A. G., 1968, Fractionation of a hyaluronic acid preparation in a density gradient: Some properties of the hyaluronic acid, Biochem. J. 109: 43.

    Google Scholar 

  • Singer, M., and Craven, L., 1948, The growth and morphogenesis of the regenerating forelimb of adult Triturus following denervation at various stages of development, J. Exp. Zool. 108: 279.

    Google Scholar 

  • Singh, M., and Bacchawat, B. K., 1965, The distribution and variation with age of different uronic acid-containing mucopolysaccharides in brain, J. Neurochem. 12: 519.

    Google Scholar 

  • Singh, M., and Bacchawat, B. K., 1968, Isolation and characterization of glycosaminoglycans in human brain of different age groups, J. Neurochem. 15: 249.

    Google Scholar 

  • Singh, M., Chandrasekaran, E. V., Cherian, R., and Bacchawat, B. K., 1969, Isolation and characterization of glycosaminoglycans in brain of different species, J. Neurochem. 16: 1157.

    Google Scholar 

  • Sissons, H. A., 1971, The growth of bone, in: The Biochemistry and Physiology of Bone, Vol. 3 ( G. H. Bourne, ed.), pp. 145–180, Academic Press, New York.

    Google Scholar 

  • Smith, G. N., Toole, B. P., and Gross, J., 1975, Hyaluronidase activity and glycosaminoglycan synthesis in the amputated newt limb: Comparison of denervating, non-regenerating limbs with regenerates, Dev. Biol. 43: 221–232.

    Google Scholar 

  • Smith, J. W., and Frame, J., 1969, Observations on the collagen and protein—polysaccharide complex of rabbit corneal stroma, J. Cell Sci. 4: 421.

    Google Scholar 

  • Solursh, M., Vaerewyck, S. A., and Reiter, R. S., 1974, Depression by hyaluronic acid of glycosaminoglycan synthesis by cultured chick embryo chondrocytes, Dev. Biol. 41: 233.

    Google Scholar 

  • Steinberg, M. S., 1970, Does differential adhesion govern the self-assembly of tissue structure? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells, J. Exp. Zool. 173: 395.

    Google Scholar 

  • Stoolmiller, A. C., and Dorfman, A., 1969, The biosynthesis of hyaluronic acid by Streptococcus, J. Biol. Chem. 244: 236.

    Google Scholar 

  • Sugiyama, K., 1972, Occurrence of mucopolysaccharides in the early development of the sea urchin embryo and its role in gastrulation, Dev. Growth Differ. 14: 63.

    Google Scholar 

  • Suzuki, S., Kojima, K., and Utsumi, K. R., 1970, Production of sulfated mucopolysaccharides by established cell lines of fibroblastic and nonfibroblastic origin, Biochim. Biophys. Acta 222: 240.

    Google Scholar 

  • Swann, D. A., 1969, Hyaluronic acid: Structure of the macromolecule in the connective tissue matrix, Biochem. Biophys. Res. Commun. 35: 571.

    Google Scholar 

  • Szabo, M. M., and Roboz-Einstein, E., 1962, Acidic polysaccharides in the central nervous system, Arch. Biochem. Biophys. 98: 406.

    Google Scholar 

  • Szirmai, J. A., 1966, Effect of steroid hormones on the glycosaminoglycans of target connective tissue, in: The Amino Sugars, Vol. 2B ( R. W. Jeanloz, and E. A. Balazs, eds.), pp. 129–154, Academic Press, New York.

    Google Scholar 

  • Telser, A., Robinson, H. C., and Dorfman, A., 1966, The biosynthesis of chondroitin sulfate, Arch. Biochem. Biophys. 116: 458.

    Google Scholar 

  • Terry, A. H., and Culp. L. A., 1974, Substrate-attached glycoproteins from normal and virus-transformed cells, Biochemistry 13: 414.

    Google Scholar 

  • Thanassi, N. M., and Newcombe, D. S., 1974, Cyclic AMP and Thyroid hormone: Inhibition of epiphyseal cartilage cyclic 3’,5’-nucleotide phosphodiesterase activity by L-triiodo-thyronine, Proc. Soc. Exp. Biol. Med. 147: 710.

    Google Scholar 

  • Toole, B. P., 1972, Hyaluronate turnover during chondrogenesis in the developing chick limb and axial skeleton, Dev. Biol. 29: 321.

    Google Scholar 

  • Toole, B. P., 1973a, Hyaluronate and hyaluronidase in morphogenesis and differentiation, Am. Zool. 13: 1061.

    Google Scholar 

  • Toole, B. P., 1973b, Hyaluronate inhibition of chondrogenesis: Antagonism of thyroxine, growth hormone and calcitonin, Science 180: 302.

    Google Scholar 

  • Toole, B. P., and Gross, J., 1971, The extracellular matrix of the regenerating newt limb: Synthesis and removal of hyaluronate prior to differentiation, Dev. Biol. 25: 57.

    Google Scholar 

  • Toole, B. P., and Lowther, D. A., 1967, Precipitation of collagen fibrils in vitro by protein

    Google Scholar 

  • polysaccarides, Biochem. Biophys. Commun. 29:515.

    Google Scholar 

  • Toole, B. P., and Lowther, D. A., 1968a, Dermatan sulfate-protein: Isolation from and interaction with collagen, Arch. Biochem. Biophys. 128: 567.

    Google Scholar 

  • Toole, B. P., and Lowther, D. A., 1968b, The effect of chondroitin sulfate-protein on the formation of collagen fibrils in vitro, Biochem. J. 109: 857.

    Google Scholar 

  • Toole, B. P., and Trelstad, R. L., 1971, Hyaluronate production and removal during corneal development in the chick, Dev. Biol. 26: 28.

    Google Scholar 

  • Toole, B. P., Jackson, G., and Gross, J., 1972, Hyaluronate in morphogenesis: Inhibition of chondrogenesis in vitro, Proc. Natl. Acad. Sci. 69: 1384.

    Google Scholar 

  • Trampusch, H. A., and Harrebomee, A. E., 1965, Dedifferentiation, a prerequisite of regeneration, in: Regeneration in Animals and Related Problems ( V. Kiortsis and H. A. Trampusch, eds.), pp. 341–374, North-Holland, Amsterdam.

    Google Scholar 

  • Trelstad, R. L., 1975, Collagen fibrillogenesis in vitro and in vivo: The existence of unique aggregates and the special state of the fibril end, in: Extracellular Matrix Influences on Gene Expression ( H. C. Slavkin and R. Greulich, eds.), pp. 331–340, Academic Press, New York.

    Google Scholar 

  • Trelstad, R. L., and Kang, A. H., 1974, Collagen heterogeneity in the avian eye: Lens, vitreous body, cornea and sclera, Exp. Eye Res. 18: 395.

    Google Scholar 

  • Trelstad, R. L., Hayashi, K., and Toole, B. P., 1974, Epithelial collagens and glycosaminoglycans in the embryonic cornea: Macromolecular order and morphogenesis in the basement membrane, J. Cell Biol. 62: 815.

    Google Scholar 

  • Tsiganos, C. P., Hardingham, T. E., and Muir, H., 1971, Proteoglycans of cartilage: An assessment of their structure, Biochim. Biophys. Acta 229: 529.

    Google Scholar 

  • Vaes, G., 1967, Hyaluronidase activity in lysosomes of bone tissue, Biochem. J. 103:802. Van Harreveld, A., Crowell, J., and Malhotra, S. K., 1965, A study of extracellular space in central nervous tissue by freeze-substitution, J. Cell Biol. 25: 117.

    Google Scholar 

  • Van Harreveld, A., Dafny, N., and Khattab, F. I., 1971, Effects of calcium on the electrical resistance and the extracellular space of cerebral cortex, Exp. Neurol. 31: 358.

    Google Scholar 

  • Varma, R., Varma, R. S., Allen, W. S., and Wardi, A. H., 1974, On the carbohydrate—protein linkage group in vitreous humor hyaluronate, Biochim. Biophys. Acta 362: 584.

    Google Scholar 

  • Wang, H. H., and Adey, W. R., 1969, Effects of cations and hyaluronidase on cerebral electrical impedance, Exp. Neurol. 25: 70.

    Google Scholar 

  • Wasteson, A., Lindahl, V., and Hallen, A., 1972, Mode of degradation of the chondroitin sulphate proteoglycan in rat costal cartilage, Biochem. J. 130: 729.

    Google Scholar 

  • Wasteson, A., Westermark, B., Lindahl, V., and Ponten, J., 1973, Aggregation of feline lymphoma cells by hyaluronic acid, Int. J. Cancer, 12: 169.

    Google Scholar 

  • Watson, E. M., and Pierce, R. H., 1949, The mucopolysaccharide content of skin in localized (pretibial) myxedema, Am. J. Clin. Pathol. 19: 442.

    Google Scholar 

  • Weinstein, H., Sachs, C. R., and Schubert, M., 1963, Proteinpolysaccharide in connective tissue: Inhibition of phase separation, Science 142: 1073.

    Google Scholar 

  • Weiss, P., 1958, Cell contact, Int. Rev. Cytol. 7: 391.

    Google Scholar 

  • Wessells, N. K., and Cohen, J. H., 1968, Effects of collagenase on developing epithelia in vitro: Lung, ureteric bud, and pancreas, Dev. Biol. 18: 294.

    Google Scholar 

  • Wiebkin, O. W., and Muir, H., 1973, The inhibition of sulphate incorporation in isolated adult chondrocytes by hyaluronic acid, FEBS Lett. 37: 42.

    Google Scholar 

  • Wiebkin, O. W., Hardingham, T. E., and Muir, H., 1975, Hyaluronic acid—proteoglycan interaction and the influence of hyaluronic acid on proteoglycan synthesis by chondrocytes from adult cartilage, in: Extracellular Matrix Influences on Gene Expression ( H. C. Slavkin and R. Greulich, eds.), pp. 209–224, Academic Press, New York.

    Google Scholar 

  • Wilkinson, J. F., 1958, The extracellular polysaccharides of bacteria, Bacteriol. Rev. 22:46.

    Google Scholar 

  • Williams, L. W., 1910, The somites of the chick, Am. J. Anat. 11: 55.

    Google Scholar 

  • Young, I. J., and Custod, J. T., 1972, Isolation of glycosaminoglycans and variation with age in the feline brain, J. Neurochem. 19: 923.

    Google Scholar 

  • Zugibe, F. T., 1962, The demonstration of the individual acid mucopolysaccharides in human aortas, coronary arteries and cerebral arteries. II. Identification and significance with aging, J. Histochem. Cytochem. 10: 448.

    Google Scholar 

  • Zwilling, E., 1968, Morphogenetic phases in development, Dev. Biol. Suppl. 2: 184.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Toole, B.P. (1976). Morphogenetic Role of Glycosaminoglycans (Acid Mucopolysaccharides) in Brain and Other Tissues. In: Barondes, S.H. (eds) Neuronal Recognition. Current Topics in Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2205-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2205-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2207-8

  • Online ISBN: 978-1-4684-2205-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics