Morphogenetic Role of Glycosaminoglycans (Acid Mucopolysaccharides) in Brain and Other Tissues

  • Bryan P. Toole
Part of the Current Topics in Neurobiology book series (CTNB)


Morphogenesis of an organ or tissue is a complex and specific series of events leading to a unique, functional organization of cellular and extracellular elements. Underlying these events are several types of cell behavior such as cell movement, recognition and adhesion, shape changes, mitosis, and death. Morphogenesis is usually accompanied by and necessary for cellular differentiation, in which the component cells undergo a series of distinctive metabolic and cytological changes that result in the synthesis or secretion of characteristic and functional cell products. Although morphogenesis and differentiation are not exact or discrete terms (they both involve metabolic, cytological, and behavioral changes), it is the behavioral aspects that are emphasized when morphogenesis is spoken of and the metabolic and cytological changes that are emphasized when differentiation is spoken of.


Hyaluronic Acid Heparan Sulfate Chick Embryo Keratan Sulfate Acid Mucopolysaccharide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anseth, A., 1961, Glycosaminoglycans in the developing corneal stroma, Expl. Eye Res. 1: 116.Google Scholar
  2. Arnott, S., Guss, J. M., Hukins, D. W., and Mathews, M. B., 1973, Mucopolysaccharides: Comparison of chondroitin sulfate conformations with those of related polyanions, Science 180: 743.Google Scholar
  3. Aronson, N. N., and Davidson, E. A., 1967a, Lysosomal hyaluronidase from rat liver. I. Preparations, J. Biol. Chem. 242: 437.Google Scholar
  4. Aronson, N. N., and Davidson, E. A., 1967b, Lysosomal hyaluronidase from rat liver. II. Properties, J. Biol. Chem. 242: 441.Google Scholar
  5. Ashhurst, D. E., and Costin, N. M., 1971, Insect mucosubstances. II. Mucosubstances of the central nervous system, Histochem. J. 3: 297.Google Scholar
  6. Atkins, E. D., Phelps, C. F., and Sheehan, J. K., 1972, The conformation of mucopolysaccharides: Hyaluronates, Biochem. J. 128: 1255.Google Scholar
  7. Atkins, E. D., Hardingham, T. E., Isaac, D. H., and Muir, H, 1974, X-ray fibre diffraction of cartilage proteoglycan aggregates containing hyaluronic acid, Biochem. J. 141: 919.Google Scholar
  8. Bernfield, M. R., 1970, Collagen synthesis during epithelio-mesenchymal interactions, Dep. Biol. 22: 213.Google Scholar
  9. Bemfield, M. R., and Banerjee, S. D., 1972, Acid mucopolysaccharide (glycosaminoglycan) at the epithelial-mesenchymal interface of mouse embryo salivary glands, J. Cell Biol. 52: 664.Google Scholar
  10. Bemfield, M. R., Banerjee, S. D., and Cohn, R. H., 1972, Dependence of salivary epithelial morphology and branching morphogenesis upon acid mucopolysaccharide-protein (proteoglycan) at the epithelial surface, J. Cell Biol. 52: 674.Google Scholar
  11. Bernfield, M. R., Cohn, R. H., and Banerjee, S. D., 1973, Glycosaminoglycans and epithelial organ formation, Am. Zool. 13: 1067.Google Scholar
  12. Bondareff, W., and Narotsky, R., 1972, Age changes in the neuronal microenvironment, Science 176: 1135.Google Scholar
  13. Bondareff, W., and Pysh, J. J., 1968, Distribution of the extracellular space during postnatal maturation of rat cerebral cortex, Anat. Rec. 160: 773.Google Scholar
  14. Bradbury, M. W., Villamil, M., and Kleiman, C. R., 1968, Extracellular fluid, ionic distribution and exchange in isolated frog brain, Am. J. Physiol. 214: 643.Google Scholar
  15. Breen, M., Weinstein, H. G., Johnson, R. L., Veis, A., and Marshall, R. T., 1970, Acidic glycosaminoglycans in human skin during fetal development and adult life, Biochim. Biophys. Acta 201: 54.Google Scholar
  16. Breen, M., Johnson, R. L., Sittig, R. A., Weinstein, H. G., and Veis, A., 1972, The acidic glycosaminoglycans in human fetal development and adult life: Cornea, sclera and skin, Connect. Tissue Res. 1: 291.Google Scholar
  17. Burger, M. M., and Martin, G. S., 1972, Agglutination of cells transformed by Rous sarcoma virus by wheat germ agglutinin and concanavalin A, Nature (London) New Biol. 237: 9.Google Scholar
  18. Chalkley, D. T., 1959, The cellular basis of limb regeneration, in: Regeneration in Vertebrates (C. S. Thornton, ed.), pp. 34–58, University of Chicago Press, Chicago. Clarris, B. J., and Fraser, J. R., 1968, On the pericellular zone of some mammalian cells ivitro, Exp. Cell Res. 49: 181.Google Scholar
  19. Cleland, R. L., 1970, Molecular weight distribution in hyaluronic acid, in: Chemistry and Molecular Biology of the Intercellular Matrix, Vol. 2 ( E. A. Balazs, ed.), pp. 733–742, Academic Press, New York.Google Scholar
  20. Comper, W. D., and Preston, B. N., 1974, Model connective tissue systems: A study of polyion-mobile ion and of excluded-volume interactions of proteoglycans, Biochem. J. 143: 1.Google Scholar
  21. Conrad, G. W., 1970, Collagen and mucopolysaccharide biosynthesis in the developing chick cornea, Dev. Biol. 21: 292.Google Scholar
  22. Coulombre, A. J., and Coulombre, J. L., 1958, Corneal development. I. Corneal transparency, J. Cell. Comp. Physiol. 51: 1.Google Scholar
  23. Coulombre, A. J., and Coulombre, J. L., 1964, Corneal development. III. The role of the thyroid in dehydration and the development of transparency, Exp. Eye Res. 3: 105.Google Scholar
  24. Custod, J. T., and Young, I. J., 1968, Cat brain mucopolysaccharides and their in vivo hyaluronidase digestion, J. Neurochem. 15: 809.Google Scholar
  25. Darzynkiewicz, A., and Balazs, E. A., 1971, Effect of connective tissue intercellular matrix on lymphocyte stimulation. I. Suppresion of lymphocyte stimulation by hyaluronic acid, Exp. Cell Res. 66: 113.Google Scholar
  26. Davidson, E. A., 1970, Glycoprotein and mucopolysaccharide hydrolysis, in: Metabolic Conjugation and Metabolic Hydrolysis, Vol. 1, ( W. H. Fishman, ed.), pp. 327–353, Academic Press, New York.Google Scholar
  27. Dea, I. C., Moorhouse, R., Rees, D. A., Amott, S., Guss, J. M., and Balazs, E. A., 1973, Hyaluronic acid: A novel, double helical molecule, Science 179: 560.Google Scholar
  28. DeLuca, S., Richmond, M. E., and Silbert, J. E., 1973, Biosynthesis of chondroitin sulfate: Sulfation of the polysaccharide chain, Biochemistry 12: 3911.Google Scholar
  29. DeSouza, S. W., and Dobbing, J., 1971, Cerebral edema in developing brain. 1. Normal water and cation content in developing rat brain and postmortem changes,Exp. Neurol. 32: 431.Google Scholar
  30. Dingle, J. T., and Webb, M., 1965, Mucopolysaccharide metabolism in tissue culture, in: Cells and Tissues in Culture, Vol. 1 ( E. N. Willmer, ed.), pp. 353–396, Academic Press, New York.Google Scholar
  31. Dingle, J. T., Barrett, A. J., and Weston, P. D., 1971, Cathepsin D—Characteristics of immunoinhibition and the confirmation of a role in cartilage breakdown, Biochem. J. 123: 1.Google Scholar
  32. Disalvo, J., and Schubert, M., 1966, Interaction during fibril formation of soluble collagen with cartilage protein polysaccharide, Biopolymers 4: 247.Google Scholar
  33. Dorner, R. W., 1968, Changes in glycosaminoglycan composition associated with maturation of regenerating rabbit tendon, Arch. Biochem. Biophys. 128: 34.Google Scholar
  34. Dunstone, J. R., 1962, Ion-exchange reactions between acid mucopolysaccharides and various cations, Biochem. J. 85: 336.Google Scholar
  35. Eisenstein, R., Larsson, S., Sorgente, N., and Kuettner, K. E., 1973, Collagen-proteoglycan relationships in epiphyseal cartilage, Am. J. Pathol. 73: 443.Google Scholar
  36. Ellison, M. L., and Lash, J. W., 1971, Environmental enhancement of in vitro chondrogenesis, Dev. Biol. 26: 486.Google Scholar
  37. Fessier, J., 1960, A structural function of mucopolysaccharide in connective tissue, Biochem. J. 76: 124.Google Scholar
  38. Finch, R. A., and Zwilling, E., 1971, Culture stability of morphogenetic properties of chick limb-bud mesoderm, J. Exp. Zool. 176: 397.Google Scholar
  39. Fransson, L. A., 1970, Structure and metabolism of the proteoglycans of dermatan sulfate, in: Chemistry and Molecular Biology of the Intercellular Matrix, Vol. 2 ( E. A. Balazs, ed.), pp. 823–842, Academic Press, New York.Google Scholar
  40. Fraser, J. R., Clarris, F. J., and Kont, L. A., 1970, The morphology and motility of human synovial cells and their pericellular gels: A time-lapse microcinematographic study, Aust. J. Biol. Sci. 23: 1297.Google Scholar
  41. Gerber, B. R., and Schubert, M., 1964, The exclusion of large solutes by cartilage protein polysaccaride, Biopolymers 2: 259.Google Scholar
  42. Goetinck, P. F., Pennypacker, J. P., and Royal, P. D., 1974, Proteochondroitin sulfate synthesis and chondrogenic expression, Exp. Cell Res. 87: 241.Google Scholar
  43. Goggins, J. F., Johnson, G. S., and Pastan, I., 1972, The effect of dibutyryl cyclic adenosine monophosphate on synthesis of sulfated acid mucopolysaccharides by transformed cells, J. Biol. Chem. 247: 5759.Google Scholar
  44. Gona, A. G., 1973, Effects of thyroxine, thyrotropin, prolactin, and growth hormone on the maturation of the frog cerebellum, Exp. Neurol. 38: 494.Google Scholar
  45. Gordon, J. S., and Lash, J. W., 1974, In vitro chondrogenesis and cell viability, Dev. Biol. 36: 88.Google Scholar
  46. Gregory, J. D., 1973, Multiple aggregation factors in cartilage proteoglycan, Biochem. J. 133: 383.Google Scholar
  47. Grillo, H. C., Lapiere, C. M., Dresden, M. H., and Gross, J., 1968, Collagenolytic activity in regenerating forelimbs of the adult newt (Triturus viridescens), Dev. Biol. 17: 571.Google Scholar
  48. Grobstein, C., 1967, Mechanisms of organogenetic tissue interaction, Natl. Cancer Inst. Monogr. 26: 279.Google Scholar
  49. Grobstein, C., and Cohen, J., 1965, Collagenase: Effect on the morphogenesis of embryonic salivary epithelium in vitro, Science 150: 626.Google Scholar
  50. Hamburger, F., and Hamilton, H. L., 1951, A series of normal stages in the development of the chick embryo, J. Morphol. 88: 49.Google Scholar
  51. Hamburgh, M., Mendoza, L. A., Burkart, J. F., and Weil, F., 1971, in: Hormones in Development (M. Hamburgh and E. J. Barrington, eds.), pp. 403–415, AppletonCentury-Crofts, New York.Google Scholar
  52. Hanaway, J., 1967, Formation and différentiation of the external granular layer of the chick cerebellum, J. Comp. Neurol. 131: 1.Google Scholar
  53. Hardingham, T. E., and Muir, H., 1972, The specific interaction of hyaluronic acid with cartilage proteoglycans, Biochim. Biophys. Acta 279: 401.Google Scholar
  54. Hardingham, T. E., and Muir, H., 1974, Hyaluronic acid in cartilage and proteoglycan aggregation, Biochem. J. 139: 565Google Scholar
  55. Hascall, V. C., and Heinegard, D., 1974a, Aggregation of cartilage proteoglycans. I. The role of hyaluronic acid, J. Biol. Chem. 249: 4232.Google Scholar
  56. Hascall, V. C., and Heinegard, D., 1974b, Aggregation of cartilage proteoglycans. II. Oligosaccharide competitors of the proteoglycan-hyaluronic acid interaction, J. Biol. Chem. 249: 4242.Google Scholar
  57. Hascall, V. C., and Heinegard, D., 1975, The structure of cartilage proteoglycans, in: Extracellular Matrix Influences on Gene Expression ( H. C. Slavkin and R. Greulich, eds.), pp. 423–434, Academic Press, New York.Google Scholar
  58. Hascall, V. C., and Sajdera, S. W., 1970, Physical properties and polydispersity of proteoglycan from bovine nasal cartilage, J. Biol. Chem. 245: 4920.Google Scholar
  59. Hay, E. D., 1966a, Regeneration, Holt, Rinehart and Winston, New York.Google Scholar
  60. Hay, E. D., 1966b, Embryologic origin of tissues, in: Histology ( R. O. Greep, ed.), pp. 5673, McGraw-Hill, New York.Google Scholar
  61. Hay, E. D., 1968, Dedifferentiation and metaplasia in vertebrate and invertebrate regeneration, in: Stability of the Differentiated State ( H. Ursprung, ed.), pp. 85–108, Springer, New York.Google Scholar
  62. Hay, E. D., 1970, Regeneration of muscle in the amputated amphibian limb, in: Regeneration of Striated Muscle, and Myogenesis ( A. Mauro, S. A., Shafiq, and A. T. Milhorat. eds), pp. 3–24, Excerpta Medica, Amsterdam.Google Scholar
  63. Hay, E. D., 1973, Origin and role of collagen in the embryo, Am. Zool. 13: 1085.Google Scholar
  64. Hay, E. D., and Meier, S., 1974, Glycosaminoglycan synthesis by embryonic inductors: Neural tube, notochord, and lens, J. Cell Biol. 62: 889.Google Scholar
  65. Hay, E. D., and Revel, J. P., 1969, Fine Structure of the Developing Avian Cornea (A. Wolsky and P. S. Chem, eds.), Vol. I of Monographs in Developmental Biology, Karger, Basel.Google Scholar
  66. Heersche, J. N., Marcus, R., and Aurbach, G. D., 1974, Calcitonin and the formation of 3’, 5’-AMP in bone and kidney, Endocrinology 94: 241.Google Scholar
  67. Heinegard, D., and Hascall, V. C., 1974, Aggregation of cartilage proteoglycans. III. Characteristics of the proteins isolated from trypsin digests of aggregates, J. Biol. Chem. 249: 4250.Google Scholar
  68. Hirano, S., and Meyer, K., 1971, Enzymatic degradation of corneal and cartilagenous keratosulfates, Biochem. Biophys. Res. Commun. 44: 1371.Google Scholar
  69. Hopwood, J. J., Fitch, F. W., and Dorfman, A., 1974, Hyaluronic acid synthesis in a cell- free system from rat fibrosarcoma, Biochem. Biophys. Res. Commun. 61: 583.Google Scholar
  70. Hovingh, P., and Linker, A., 1970, The enzymatic degradation of heparin and heparitin sulfate. III. Purification of a heparitinase and a heparinase from flavobacteria, J. Biol. Chem. 245: 6170.Google Scholar
  71. Huffer, E. S., 1970, Glycosaminoglycans in the cartilage of developing chick embryo limbs, Calc. Tissue Res. 6: 55.Google Scholar
  72. Immers, J., 1961, Comparative study of the localization of incorporated “C-labeled amino acids and 35504 in the sea urchin ovary, egg and embryo, Exp. Cell Res. 24: 356.Google Scholar
  73. Immers, J., and Runnstrom, J., 1965, Further studies of the effects of deprivation of sulfate on the early development of the sea urchin Paracentrosus lividus, J. Embryol. Exp. Morphol. 14: 289.Google Scholar
  74. Ishimoto, N., Temin, H. M., and Strominger, J. L., 1966, Studies of carcinogenesis by avian sarcoma viruses. II. Virus-induced increase in hyaluronic acid synthetase in chicken fibroblasts, J. Biol. Chem. 241: 2052.Google Scholar
  75. Iwata, H., and Urist, M. R., 1973, Hyaluronic acid production and removal during bone morphogenesis in implants of bone matrix in rats, Clin. Orthop. Rel. Res. 90: 236.Google Scholar
  76. Jacobson, M., 1970, Developmental Neurobiology, Holt, Rinehart and Winston, New York. Kallman, F., and Grobstein, C., 1965, Source of collagen at epitheliomesenchymal interfaces during inductive interaction, Dev. Biol. 11: 169.Google Scholar
  77. Karp, G. C., and Solursh, M., 1974, Acid mucopolysaccharide metabolism, the cell surface, and primary mesenchyme cell activity in the sea urchin embryo, Dev. Biol. 41: 110.Google Scholar
  78. Katchalsky, A., 1964, Polyelectrolytes and their biological interactions, Biophys. J. Suppl. 4: 9.Google Scholar
  79. Kempson, G. E., Muir, H., Swanson, S. A., and Freeman, M. A., 1970, Correlations between stiffness and the chemical constituents of cartilage on the human femoral head, Biochim. Biophys. Acta 215: 70.Google Scholar
  80. Kinoshita, S., 1969, Periodical release of heparin-like polysaccharide within cytoplasm during cleavage of sea urchin egg, Exp. Cell Res. 56: 39.Google Scholar
  81. Kojima, K., and Yamagata, T., 1971, Glycosaminoglycans and electrokinetic behavior of rat ascites hepatoma cells, Exp. Cell Res. 67: 142.Google Scholar
  82. Kollros, J. J., and McMurray, V. M., 1956, The mesencephalic V nucleus in anurans. II. The influence of thyroid hormone on cell size and cell number, J. Exp. Zool. 131: 1.Google Scholar
  83. Konigsberg, I. R., 1970, The relationship of collagen to the clonal development of embryonic skeletal muscle, in: Chemistry and Molecular Biology of the Intercellular Matrix, Vol. 3 ( E. A. Balazs, ed.), pp. 1779–1810, Academic Press, New York.Google Scholar
  84. Kosher, R. A., and Searls, R. L., 1973, Sulfated mucopolysaccharide synthesis during the development of Rana pipiens, Dev. Biol. 32: 50.Google Scholar
  85. Kosher, R. A., Lash, J. W., and Minor, R. R., 1973, Environment enhancement of in vitro chondrogenesis. IV. Stimulation of somite chondrogenesis by exogenous chondromucoprotein, Dev. Biol. 35: 210.Google Scholar
  86. Kraemer, P. M., 1971a, Heparan sulfates of cultured cells. I. Membrane associated and cell-sap species in Chinese hamster cells, Biochemistry 10: 1437.Google Scholar
  87. Kraemer, P. M., 1971b, Heparan sulfates of cultured cells. II. Acid-soluble and precipitable species of different cell lines, Biochemistry 10: 1445.Google Scholar
  88. Kraemer, P. M., and Tobey, R. A., 1972, Cell-cycle dependent desquamation of heparan sulfate from the cell surface, J. Cell Biol. 55: 713.Google Scholar
  89. Krusius, T., Finne, J., Karkkainen, J., and Jamefelt, J., 1974, Neutral and acidic glycopeptides in adult and developing rat brain, Biochim. Biophys. Acta 365: 80.Google Scholar
  90. Kvist, T. N., and Finnegan, C. V., 1970a, The distribution of glycosaminoglycans in the axial region of the developing chick embryo. I. Histochemical analysis, J. Exp. Zool. 175: 221.Google Scholar
  91. Kvist, T. N., and Finnegan, C. V., 1970b, The distribution of glycosaminoglycans in the axial region of the developing chick embryo. II. Biochemical analysis, J. Exp. Zool. 175: 241.Google Scholar
  92. Lash, J. W., 1968, Chondrogenesis: Genotypic and phenotypic expression. J. Cell. Physiol. 72:Suppl. 1, 35–46.Google Scholar
  93. Lash. J. W., and Kosher, R. A., 1975, Perinotochordal proteoglycans and somite chondrogenesis, in: Extracellular Matrix Influences on Gene Expression ( H. C. Slavkin and R. Greulich, eds.), pp. 671–676, Academic Press, New York.Google Scholar
  94. Lash, J., Holtzer, S., and Holtzer, H., 1957, An experimental analysis of the development of the spinal column, Exp. Cell Res. 13: 292.Google Scholar
  95. Laurent, T. C., 1964, The interaction between polysaccharides and other macromolecules. 9. The exclusion of molecules from hyaluronic acid gels and solutions, Biochem. J. 93: 106.Google Scholar
  96. Laurent, T. C., 1966, In vitro studies on the transport of macromolecules through the connective tissue, Fed. Proc. 25: 1128.Google Scholar
  97. Laurent, T. C., 1970, Structure of hyaluronic acid, in: Chemistry and Molecular Biology of the Intercellular Matrix, Vol. 2 ( E. A. Balazs, ed.), pp. 703–732. Academic Press, New York.Google Scholar
  98. Laurent, T. C., and Ogston, A. G., 1963, The interaction between polysaccharides and other macromolecules. 4. The osmotic pressure of mixtures of serum albumin and hyaluronic acid, Biochem. J. 89: 249.Google Scholar
  99. Laurent, T. C., Ryan, M., and Pietruszkiewicz, A., 1960, Fractionation of hyaluronic acid: The polydispersity of hyaluronic acid from the bovine vitreous body, Biochim. Biophys. Acta 42: 476.Google Scholar
  100. Laurent, T. C., Bjork, I., Pietruskiewicz, A., and Persson, H., 1963, On the interaction between polysaccarides and other macromolecules. II. The transport of globular particles through hyaluronic acid solutions, Biochim. Biophys. Acta 78: 351.Google Scholar
  101. LaVail, J. H., and Cowan, W. M., 1971a, The development of the chick optic tectum. I. Normal morphology and cytoarchitectonic development, Brain Res. 28: 391.Google Scholar
  102. LaVail, J. H., and Cowan, W. M., 1971b, The development of the chick optic tectum. II. Autoradiographic studies, Brain Res. 28: 421.Google Scholar
  103. LeGrand, J., 1971, Comparative effects of thyroid deficiency and undernutrition on maturation of the nervous system and particularly on myelination in the young rat, in: Hormones in Development ( M. Hamburgh and E. J., Barrington, eds.), pp. 381–390 Appleton-Century-Crofts, New York.Google Scholar
  104. Levey, G. S., and Epstein, S. E., 1969, Myocardial adenylcyclase: Activation by thyroid hormone and evidence for two adenyl cyclase systems, J. Clin. Invest. 48: 1663.Google Scholar
  105. Levitt, D., and Dorfman, A., 1974, Concepts and mechanisms of cartilage differentiation, in: Current Topics in Development Biology, Vol. 8 ( A. Moscona, ed.), pp. 103–149, Academic Press, New York.Google Scholar
  106. Lindahl, U., 1970, Structure of heparin, heparan sulfate and their proteoglycans, in: Chemistry and Molecular Biology of the Intercellular Matrix, Vol. 2 ( E. A. Balazs, ed.), pp. 943–960, Academic Press, New York.Google Scholar
  107. Linsenmayer, T. F., 1974, Temporal and spatial transitions in collagen types during embryonic chick limb development. II. Comparison of the embryonic cartilage collagen molecule with that from adult cartilage, Dev. Biol. 40: 372.Google Scholar
  108. Linsenmayer, T. F., Trelstad, R. L., Toole, B. P., and Gross, J., 1973a, The collagen of osteogenic cartilage in the embryonic chick, Biochem. Biophys. Res. Commun. 52: 870.Google Scholar
  109. Linsenmayer, T. F., Toole, B. P., and Trelstad, R. L., 1973b, Temporal and spatial transitions in collagen types during embryonic chick limb development, Dev. Biol. 35: 232.Google Scholar
  110. Lippman, M., 1968, Glycosaminoglycans and cell division, in: Epithelial—Mesenchymal Interactions ( R. Fleischmajer and R. E. Billingham, eds.), pp. 208–229, Williams and Wilkins, Baltimore.Google Scholar
  111. Lipson, M. J., Cerskus, R. A., and Silbert, J. E., 1971, Glycosaminoglycans and glycosaminoglycan degrading enzyme of Rana catesbeiana back skin during late stages of metamorphosis, Dev. Biol. 25: 198.Google Scholar
  112. Loewi, G., and Meyer, K., 1958, The acid mucopolysaccharides of embryonic skin, Biochim. Biophys. Acta 27: 453.Google Scholar
  113. Lowther, D. A., Preston, B. N., and Meyer, F. A., 1970, Isolation and properties of chondroitin sulphates from bovine heart valves, Biochem. J. 118: 595.Google Scholar
  114. Makita, A., and Shimojo, H., 1973, Polysaccarides of SV40-transformed green monkey kidney cells, Biochim. Biophys. Acta 304: 571.Google Scholar
  115. Manasek, F. J., Reid, M., Vinson, W., Seyer, J., and Johnson, R., 1973, Glycosaminoglycan synthesis by the early embryonic chick heart, Dev. Biol. 35: 332.Google Scholar
  116. Marcus, R., 1975, Cyclic nucleotide phosphodiesterase from bone: Characterization of the enyzyme and studies of inhibition by thyroid hormones, Endocrinology 96: 400.Google Scholar
  117. Margolis, R. U., 1967, Acid mucopolysaccharides and proteins of bovine whole brainGoogle Scholar
  118. Margolis, R. U., and Atherton, D. M., 1972, The heparan sulfate of rat brain, Biochim. Biophys. Acta 273: 368.Google Scholar
  119. Margolis, R. U., and Margolis, R. K., 1974, Distribution and metabolism of mucopolysaccharides and glycoproteins in neuronal perikarya, astrocytes and oligodendroglia, Biochemistry 13: 2849.Google Scholar
  120. Margolis, R. U., Margolis, R. K., Chang, L. B., and Preti, C., 1975, Glycosaminoglycans of brain during development, Biochemistry 41: 85.Google Scholar
  121. Markwald, R. R., and Adams-Smith, W. N., 1972, Distribution of mucosubstances in the developing rat heart, J. Histochem. Cytochem. 20: 896.Google Scholar
  122. Martin, T. J., Harris, G. S., Melick, R. A., and Fraser, J. R., 1969, Effect of calcitonin on glycosaminoglycan synthesis of embryo calf bone cells in vitro, Experientia 25: 375.Google Scholar
  123. Mathews, M. B., 1965, The interaction of collagen and acid mucopolysaccharides: A model for connective tissue, Biochem. J. 96: 710.Google Scholar
  124. Mathews, M. B., and Decker, L., 1968, The effect of acid mucopolysaccarides and acid mucopolysaccharide-proteins on fibril formation from collagen solutions, Biochem. J. 109: 517.Google Scholar
  125. Maurer, P. H., and Hudack, S. S., 1952, Isolation of hyaluronic acid from callus tissue during early healing, Arch. Biochem. 38: 49.Google Scholar
  126. Medoff, J., 1967, Enzymatic events during cartilage differentiation in the chick embryonic limb bud, Dev. Biol. 16: 118.Google Scholar
  127. Meier, S., and Hay, E. D., 1973, Synthesis of sulfated glycosaminoglycans by embryonic corneal epithelium, Dev. Biol. 35: 318.Google Scholar
  128. Meier, S., and Hay, E. D., 1974, Stimulation of extracellular matrix synthesis in the developing cornea by glycosaminoglycans, Proc. Natl. Acad. Sci. USA 71: 2310.Google Scholar
  129. Meier, S., and Solursh, M., 1973, Mediation of growth hormone-enhanced expression of the cartilage phenotype in vitro by the availability of the essential amino acid valine, Dev. Biol. 30: 290.Google Scholar
  130. Meyer, K., Hoffman, P., and Linker, A., 1960, Hyaluronidases, in: The Enzymes, Vol. 4 ( P. D. Boyer, H. Lardy, and K. Myrback, eds.), pp. 447–460, Academic Press, New York.Google Scholar
  131. Meyer, F. A., Preston, B. N., and Lowther, D. A., 1969, Isolation and properties of hyaluronic acid from bovine heart valves, Biochem. J. 113: 559.Google Scholar
  132. Meyer, F. A., Comper, W. D., and Preston, B. N., 1971, Model connective tissues systems: A physical study of gelatin gels containing proteoglycans, Biopolymers 10: 1351.Google Scholar
  133. Minns, R. J., Soden, P. D., and Jackson, D. S., 1973, The role of the fibrous components and ground substance in the mechanical properties of biological tissues: A preliminary investigation, J. Biomech. 6: 153.Google Scholar
  134. Morris, C. C., 1960, Quantitative studies on the production of acid mucopolysaccharides by replicate cell cultures of rat fibroblasts, Ann. N.Y. Acad. Sci. 86: 878.Google Scholar
  135. Morris, C. C., and Godman, G. C., 1960, Production of acid mucopolysaccharides by fibroblasts in cell cultures, Nature (London) 188: 407.Google Scholar
  136. Moscatelli, D., and Rubin, H., 1975, Increased hyaluronic acid production on stimulation of DNA synthesis in chick embryo fibroblasts, Nature (London) 254: 65.Google Scholar
  137. Moscona, A. A., 1960, Patterns and mechanisms of tissue reconstruction from dissociated cells, in: Developing Cell Systems and Their Control ( D. Rudnick, ed.), pp. 45–70, Ronald Press, New York.Google Scholar
  138. Moscona, A. A., 1961, Rotation-mediated histogenetic aggregation of dissociated cells: A quantifiable approach to cell interactions in vitro, Exp. Cell Res. 22: 455.Google Scholar
  139. Moskowitz, J., and Fain, J. N., 1970, Stimulation by growth hormone and dexamethasone of labelled cyclic adenosine 3’,5’-monophosphate accumulation by white fat cells, J. Biol. Chem. 245: 1101.Google Scholar
  140. Muir, H., 1969, The structure and metabolism of mucopolysaccharides (glycosaminoglycans) and the problem of the mucopolysaccharidoses, Am. J. Med. 47: 673.Google Scholar
  141. Mustafa, M., and Kamat, D. N., 1973, Mucopolysaccharide histochemistry of Musca domestica. VII. The brain, Acta Histochem. 45: 254.Google Scholar
  142. Nakao, K., and Bashey, R. I., 1972, Fine structure of collagen fibrils as revealed by ruthenium red, Exp. Mol. Pathol. 17: 6.Google Scholar
  143. Nanto, V., 1969, Electrophoretic analysis of acidic glycosaminoglycans and its application to the developing chick embryo, Ann. Acad. Sci. Fenn. Ser. AS (Medica) 144: 1.Google Scholar
  144. Nemeth-Csoka, M., 1970, Importance of sulphated acid mucopolysaccharides for fibrillogenesis in carrageenin granulomata of rats at different ages, Exp. Gerontol. 5: 67.Google Scholar
  145. Neufeld, E. F., 1974, The biochemical basis for mucopolysaccharidoses and mucolipidoses, in: Progress in Medical Genetics, Vol. 10 ( A. G. Steinberg and A. G. Beam, eds.), pp. 81–101, Grune and Stratton, New York.Google Scholar
  146. Nevis, A. H., and Collins, G. H., 1967, Electrical impedance and volume changes in brain during development, Brain Res. 5: 57.Google Scholar
  147. Nevo, Z., and Dorfman, A., 1972, Stimulation of chondromucoprotein synthesis in chondrocytes by extracellular chondromucoprotein, Proc. Natl. Acad. Sci. USA 69: 2069.Google Scholar
  148. Obrink, B., 1972, Isolation and partial characterization of a dermatan sulfate proteoglycan from pig skin, Biochim. Biophys. Acta 264: 354.Google Scholar
  149. Obrink, B., 1973a, A study of the interactions between monomeric tropocollagen and glycosaminoglycans, Eur. J. Biochem. 33: 387.Google Scholar
  150. Obrink, B., 1973b, The influence of glycosaminoglycans on the formation of fibers from monomeric tropocollagen in vitro, Eur. J. Bioch. 34: 129.Google Scholar
  151. Ogston, A. G., 1966, On water binding, Fed. Proc. 25: 986.Google Scholar
  152. Ogston, A. G., 1970, The biological functions of the glycosaminoglycans, in: Chemistry and Molecular Biology of the Intercellular Matrix, Vol. 3 (E. A. Balazs, ed.), pp. 12311240, Academic Press, New York.Google Scholar
  153. Ogston, A. G., and Phelps, C. F., 1961, The partition of solutes between buffer solutions and solutions containing hyaluronic acid, Biochem. J. 78: 827.Google Scholar
  154. Ogston, A. G., and Sherman, T. F., 1961, Effects of hyaluronic acid upon diffusion of solutes and flow of solvent, J. Physiol. (London) 156: 67.Google Scholar
  155. Ogston, A. G., and Stanier, J. E., 1953, The physiological function of hyaluronic acid in synovial fluid; viscous, elastic and lubricant properties, J. Physiol. (London) 119: 244.Google Scholar
  156. Ohya, T., and Kaneko, Y., 1970, Novel hyaluronidase from Streptomyces, Biochim. Biophys. Acta 198: 607.Google Scholar
  157. Palmoski, M. J., and Goetinck, P. F., 1972, Synthesis of proteochondroitin sulfate by normal, nanomelic and 5-bromodeoxyuridine-treated chondrocytes in cell culture, Proc. Natl. Acad. Sci. USA 69: 3385.Google Scholar
  158. Palmoski, M., Khosla, R., and Brandt, K., 1974, Small proteoglycans of cartilage: Confirmation of their presence by non-disruptive extraction, Biochim. Biophys. Acta 372: 171.Google Scholar
  159. Pawelek, J. M., 1969, Effects of thyroxine and low oxygen tension on chondrogenic expression in cell culture, De?). Biol. 19: 52.Google Scholar
  160. Pesetsky, I., 1966, The role of the thyroid in the development of Mauthner’s neuron: A karyometric study in thyroidectomized anuran larvae, Z. Zellforsch. 75:138. Pessac, B., and Defendi, V., 1972, Cell aggregation: Role of acid mucopolysaccharides, Science 175: 898.Google Scholar
  161. Podrazky, V., Steven, F. S., Jackson, D. S., Weiss, J. B., and Leibovich, S. J., 1971, Interaction of tropocollagen with protein polysaccharide complexes: An analysis of the ionic groups responsible for interaction, Biochim. Biophys. Acta 229: 690.Google Scholar
  162. Polansky, J., and Toole, B. P., 1975, unpublished results.Google Scholar
  163. Polansky, J., Toole, B. P., and Gross, J., 1974, Brain hyaluronidase: Changes in activity during chick development, Science 183: 862.Google Scholar
  164. Pratt, R. M., Larsen, M. A., and Johnston, M. C., 1975, Migration of cranial neural crest cells in a cell-free hyaluronate-rich matrix, Dev. Biol. 44: 298–305.Google Scholar
  165. Praus, R., and Brettschneider, I., 1970, Presence of a non-sulphated glucosaminoglycan in embryonic cornea, FEBS Lett. 6: 221.Google Scholar
  166. Praus, R., and Brettschneider, I., 1971, Glycosaminoglycans in the developing chicken cornea, Ophthalmol. Res. 2: 367.Google Scholar
  167. Preston, B. N., and Snowden, J. M., 1972, Model connective tissue systems: The effect of proteoglycans on the diffusional behavior of small non-electrolytes and microions, Biopolymers 11: 1627.Google Scholar
  168. Preston, B. N., Davies, M., and Ogston, A. G., 1965, The composition and physicochemical properties of hyaluronic acids prepared from ox synovial fluid and from a case of mesothelioma, Biochem. J. 96: 449.Google Scholar
  169. Quintarelli, G., Vocaturo, A., Bellocci, M., Roden, L., Iffolito, E., and Baker, J. R., 1974, Preliminary ultrastructural demonstration of hyaluronic acid-proteoglycan interaction in cartilage matrix, Am. J. Anat. 140: 433.Google Scholar
  170. Reid, T., and Flint, M. H., 1974, Changes in glycosaminoglycan content of healing rabbit tendon, J. Embryol. Exp. Morphol. 31: 489.Google Scholar
  171. Rienits, K. G., 1960, The acid mucopolysaccharides of the sexual skin of apes and monkeys, Biochem. J. 74: 27.Google Scholar
  172. Robinson, H. C., Telser, A., and Dorfman, A., 1966, Studies on biosynthesis of the linkage region of chondroitin sulfate-protein complex, Proc. Natl. Acad. Sci. 56: 1859.Google Scholar
  173. Roblin, R., Albert, S. O., Gelb, N. A., and Black, P. H., 1975, Cell surface changes correlated with density-dependent growth inhibition: Glycosaminoglycan metabolism in 3T3, SV3T3, and Con A selected revertant cells, Biochemistry 14: 347.Google Scholar
  174. Roden, L., 1970a, The structure and metabolism of the proteoglycans of chondroitin sulfates and keratan sulfate, in: Chemistry and Molecular Biology of the Intercellular Matrix Vol. 2 ( E. A. Balazs, ed.), pp. 797–821, Academic Press, New York.Google Scholar
  175. Roden, L., 1970b, Biosynthesis of acidic glycosaminoglycans (mucopolysaccharides), in: Metabolic Conjugation and Metabolic Hydrolysis, Vol. 2 ( W. H. Fishman, ed.), pp. 345–442, Academic Press, New York.Google Scholar
  176. Rosenberg, L., Hellmann, W., and Kleinschmidt, A. K., 1970, Macromolecular models of protein polysaccarides from bovine nasal cartilage based on electron microscopic studies, J. Biol. Chem. 245: 4123.Google Scholar
  177. Saito, H. Yamagata, T., and Suzuki, S., 1968, Enzymatic methods for the determination of small quantities of isomeric chondroitin sulfates, J. Biol. Chem. 243: 1536.Google Scholar
  178. Sajdera, S. W., and Hascall, V. C., 1969, Proteinpolysaccharide complex from bovine nasal cartilage: A comparison of low and high shear extraction procedures, J. Biol. Chem. 244: 77.Google Scholar
  179. Sajdera, S. W., Hascall, V. C., Gregory, J. D., and Dziewiatkowski, D. D., 1970, The proteoglycans of bovine nasal cartilage: Structure of the aggregate, in: Chemistry and Molecular Biology of the Intercellular Matrix, Vol. 2 ( E. A. Balazs, ed.), pp. 851–858, Academic Press, New York.Google Scholar
  180. Samuels, H. H., and Tsai, J. S., 1973, Thyroid hormone action in cell culture: Demonstration of nuclear receptors in intact cells and isolated nuclei, Proc. Natl. Acad. Sci. 70: 3488.Google Scholar
  181. Sapolsky, A. I., Howell, D. S., and Woessner, J. F., 1974, Neutral proteases and cathepsin D in human articular cartilage, J. Clin. Invest. 53: 1044.Google Scholar
  182. Satoh, C., Duff, R., Rapp, F., and Davidson, E. A., 1973, Production of mucopolysaccharides by normal and transformed cells, Proc. Natl. Acad. Sci. 70: 54.Google Scholar
  183. Schacter, L. P., 1970, Effect of conditioned media on differentiation in mass cultures of chick limb bud cells. I. Mophological effects, Exp. Cell Res. 63: 19.Google Scholar
  184. Schiller, S., Slover, G. A., and Dorfman, A., 1962, Effect of the thyroid gland on metabolism of acid mucopolysaccharides in skin, Biochim. Biophys. Acta 58: 27.Google Scholar
  185. Schubert, M., and Hamerman, D., 1964, The functioning of the diffuse macromolecules of joints, Bull. Rheum. Dis. 14: 345.Google Scholar
  186. Schubert, M., and Hammerman, D., 1968, A Primer on Connective Tissue Biochemistry, Lea and Febiger, Philadelphia.Google Scholar
  187. Schwartz, N. B., Roden, L., and Dorfman, A., 1974, Biosynthesis of chondroitin sulfate: Interaction between xylosyltransferase and galactosyltransferase, Biochem. Biophys. Res. Commun. 56: 717.Google Scholar
  188. Schwartz, N. B., Dorfman, A., and Roden, L., 1975, Role of enzyme—enzyme interactions in the organization of multi—enzyme systems, in: Extracellular Matrix Influences on Gene Expression ( H. C. Slavkin and R. Greulich, eds.), pp. 197–208, Academic Press, New York.Google Scholar
  189. Scott, J. E., 1968, Ion binding in solutions containing acid mucopolysaccharides, in: The Chemical Physiology of Mucopolysaccharides ( G. Quintarelli, ed.), pp. 171–187, Little, Brown, Boston,.Google Scholar
  190. Searls, R. L., 1965, An autoradiographic study of the uptake of S’-sulfate during the differentiation of limb bud cartilage, Dep. Biol. 11: 155.Google Scholar
  191. Searls, R. L., and Janners, M. Y., 1969, The stabilization of cartilage properties in the cartilage-forming mesenchyme of the embryonic chick limb, J. Exp. Zool. 170: 365.Google Scholar
  192. Serafini-Fracassini, A., Wells, P. J., and Smith, J. W., 1970, in: Chemistry and Molecular Biology of the Intercellular Matrix, Vol. 2 (E. A. Balazs, ed.), pp. 1201–1215, Academic Press, New York.Google Scholar
  193. Sidman, R. L., and Rakic, P., 1973, Neuronal migration with special reference to developing human brain: A review, Brain Res. 62: 1.Google Scholar
  194. Silbert, J. E., and DeLuca, S., 1970, Degradation of glycosaminoglycans by tadpole tissue: Differences in activity toward chondroitin 4-sulfate and chondroitin 6-sulfate, J. Biol. Chem. 245: 1506.Google Scholar
  195. Silpananta, P., Dunstone, J. R., and Ogston, A. G., 1968, Fractionation of a hyaluronic acid preparation in a density gradient: Some properties of the hyaluronic acid, Biochem. J. 109: 43.Google Scholar
  196. Singer, M., and Craven, L., 1948, The growth and morphogenesis of the regenerating forelimb of adult Triturus following denervation at various stages of development, J. Exp. Zool. 108: 279.Google Scholar
  197. Singh, M., and Bacchawat, B. K., 1965, The distribution and variation with age of different uronic acid-containing mucopolysaccharides in brain, J. Neurochem. 12: 519.Google Scholar
  198. Singh, M., and Bacchawat, B. K., 1968, Isolation and characterization of glycosaminoglycans in human brain of different age groups, J. Neurochem. 15: 249.Google Scholar
  199. Singh, M., Chandrasekaran, E. V., Cherian, R., and Bacchawat, B. K., 1969, Isolation and characterization of glycosaminoglycans in brain of different species, J. Neurochem. 16: 1157.Google Scholar
  200. Sissons, H. A., 1971, The growth of bone, in: The Biochemistry and Physiology of Bone, Vol. 3 ( G. H. Bourne, ed.), pp. 145–180, Academic Press, New York.Google Scholar
  201. Smith, G. N., Toole, B. P., and Gross, J., 1975, Hyaluronidase activity and glycosaminoglycan synthesis in the amputated newt limb: Comparison of denervating, non-regenerating limbs with regenerates, Dev. Biol. 43: 221–232.Google Scholar
  202. Smith, J. W., and Frame, J., 1969, Observations on the collagen and protein—polysaccharide complex of rabbit corneal stroma, J. Cell Sci. 4: 421.Google Scholar
  203. Solursh, M., Vaerewyck, S. A., and Reiter, R. S., 1974, Depression by hyaluronic acid of glycosaminoglycan synthesis by cultured chick embryo chondrocytes, Dev. Biol. 41: 233.Google Scholar
  204. Steinberg, M. S., 1970, Does differential adhesion govern the self-assembly of tissue structure? Equilibrium configurations and the emergence of a hierarchy among populations of embryonic cells, J. Exp. Zool. 173: 395.Google Scholar
  205. Stoolmiller, A. C., and Dorfman, A., 1969, The biosynthesis of hyaluronic acid by Streptococcus, J. Biol. Chem. 244: 236.Google Scholar
  206. Sugiyama, K., 1972, Occurrence of mucopolysaccharides in the early development of the sea urchin embryo and its role in gastrulation, Dev. Growth Differ. 14: 63.Google Scholar
  207. Suzuki, S., Kojima, K., and Utsumi, K. R., 1970, Production of sulfated mucopolysaccharides by established cell lines of fibroblastic and nonfibroblastic origin, Biochim. Biophys. Acta 222: 240.Google Scholar
  208. Swann, D. A., 1969, Hyaluronic acid: Structure of the macromolecule in the connective tissue matrix, Biochem. Biophys. Res. Commun. 35: 571.Google Scholar
  209. Szabo, M. M., and Roboz-Einstein, E., 1962, Acidic polysaccharides in the central nervous system, Arch. Biochem. Biophys. 98: 406.Google Scholar
  210. Szirmai, J. A., 1966, Effect of steroid hormones on the glycosaminoglycans of target connective tissue, in: The Amino Sugars, Vol. 2B ( R. W. Jeanloz, and E. A. Balazs, eds.), pp. 129–154, Academic Press, New York.Google Scholar
  211. Telser, A., Robinson, H. C., and Dorfman, A., 1966, The biosynthesis of chondroitin sulfate, Arch. Biochem. Biophys. 116: 458.Google Scholar
  212. Terry, A. H., and Culp. L. A., 1974, Substrate-attached glycoproteins from normal and virus-transformed cells, Biochemistry 13: 414.Google Scholar
  213. Thanassi, N. M., and Newcombe, D. S., 1974, Cyclic AMP and Thyroid hormone: Inhibition of epiphyseal cartilage cyclic 3’,5’-nucleotide phosphodiesterase activity by L-triiodo-thyronine, Proc. Soc. Exp. Biol. Med. 147: 710.Google Scholar
  214. Toole, B. P., 1972, Hyaluronate turnover during chondrogenesis in the developing chick limb and axial skeleton, Dev. Biol. 29: 321.Google Scholar
  215. Toole, B. P., 1973a, Hyaluronate and hyaluronidase in morphogenesis and differentiation, Am. Zool. 13: 1061.Google Scholar
  216. Toole, B. P., 1973b, Hyaluronate inhibition of chondrogenesis: Antagonism of thyroxine, growth hormone and calcitonin, Science 180: 302.Google Scholar
  217. Toole, B. P., and Gross, J., 1971, The extracellular matrix of the regenerating newt limb: Synthesis and removal of hyaluronate prior to differentiation, Dev. Biol. 25: 57.Google Scholar
  218. Toole, B. P., and Lowther, D. A., 1967, Precipitation of collagen fibrils in vitro by proteinGoogle Scholar
  219. polysaccarides, Biochem. Biophys. Commun. 29:515.Google Scholar
  220. Toole, B. P., and Lowther, D. A., 1968a, Dermatan sulfate-protein: Isolation from and interaction with collagen, Arch. Biochem. Biophys. 128: 567.Google Scholar
  221. Toole, B. P., and Lowther, D. A., 1968b, The effect of chondroitin sulfate-protein on the formation of collagen fibrils in vitro, Biochem. J. 109: 857.Google Scholar
  222. Toole, B. P., and Trelstad, R. L., 1971, Hyaluronate production and removal during corneal development in the chick, Dev. Biol. 26: 28.Google Scholar
  223. Toole, B. P., Jackson, G., and Gross, J., 1972, Hyaluronate in morphogenesis: Inhibition of chondrogenesis in vitro, Proc. Natl. Acad. Sci. 69: 1384.Google Scholar
  224. Trampusch, H. A., and Harrebomee, A. E., 1965, Dedifferentiation, a prerequisite of regeneration, in: Regeneration in Animals and Related Problems ( V. Kiortsis and H. A. Trampusch, eds.), pp. 341–374, North-Holland, Amsterdam.Google Scholar
  225. Trelstad, R. L., 1975, Collagen fibrillogenesis in vitro and in vivo: The existence of unique aggregates and the special state of the fibril end, in: Extracellular Matrix Influences on Gene Expression ( H. C. Slavkin and R. Greulich, eds.), pp. 331–340, Academic Press, New York.Google Scholar
  226. Trelstad, R. L., and Kang, A. H., 1974, Collagen heterogeneity in the avian eye: Lens, vitreous body, cornea and sclera, Exp. Eye Res. 18: 395.Google Scholar
  227. Trelstad, R. L., Hayashi, K., and Toole, B. P., 1974, Epithelial collagens and glycosaminoglycans in the embryonic cornea: Macromolecular order and morphogenesis in the basement membrane, J. Cell Biol. 62: 815.Google Scholar
  228. Tsiganos, C. P., Hardingham, T. E., and Muir, H., 1971, Proteoglycans of cartilage: An assessment of their structure, Biochim. Biophys. Acta 229: 529.Google Scholar
  229. Vaes, G., 1967, Hyaluronidase activity in lysosomes of bone tissue, Biochem. J. 103:802. Van Harreveld, A., Crowell, J., and Malhotra, S. K., 1965, A study of extracellular space in central nervous tissue by freeze-substitution, J. Cell Biol. 25: 117.Google Scholar
  230. Van Harreveld, A., Dafny, N., and Khattab, F. I., 1971, Effects of calcium on the electrical resistance and the extracellular space of cerebral cortex, Exp. Neurol. 31: 358.Google Scholar
  231. Varma, R., Varma, R. S., Allen, W. S., and Wardi, A. H., 1974, On the carbohydrate—protein linkage group in vitreous humor hyaluronate, Biochim. Biophys. Acta 362: 584.Google Scholar
  232. Wang, H. H., and Adey, W. R., 1969, Effects of cations and hyaluronidase on cerebral electrical impedance, Exp. Neurol. 25: 70.Google Scholar
  233. Wasteson, A., Lindahl, V., and Hallen, A., 1972, Mode of degradation of the chondroitin sulphate proteoglycan in rat costal cartilage, Biochem. J. 130: 729.Google Scholar
  234. Wasteson, A., Westermark, B., Lindahl, V., and Ponten, J., 1973, Aggregation of feline lymphoma cells by hyaluronic acid, Int. J. Cancer, 12: 169.Google Scholar
  235. Watson, E. M., and Pierce, R. H., 1949, The mucopolysaccharide content of skin in localized (pretibial) myxedema, Am. J. Clin. Pathol. 19: 442.Google Scholar
  236. Weinstein, H., Sachs, C. R., and Schubert, M., 1963, Proteinpolysaccharide in connective tissue: Inhibition of phase separation, Science 142: 1073.Google Scholar
  237. Weiss, P., 1958, Cell contact, Int. Rev. Cytol. 7: 391.Google Scholar
  238. Wessells, N. K., and Cohen, J. H., 1968, Effects of collagenase on developing epithelia in vitro: Lung, ureteric bud, and pancreas, Dev. Biol. 18: 294.Google Scholar
  239. Wiebkin, O. W., and Muir, H., 1973, The inhibition of sulphate incorporation in isolated adult chondrocytes by hyaluronic acid, FEBS Lett. 37: 42.Google Scholar
  240. Wiebkin, O. W., Hardingham, T. E., and Muir, H., 1975, Hyaluronic acid—proteoglycan interaction and the influence of hyaluronic acid on proteoglycan synthesis by chondrocytes from adult cartilage, in: Extracellular Matrix Influences on Gene Expression ( H. C. Slavkin and R. Greulich, eds.), pp. 209–224, Academic Press, New York.Google Scholar
  241. Wilkinson, J. F., 1958, The extracellular polysaccharides of bacteria, Bacteriol. Rev. 22:46.Google Scholar
  242. Williams, L. W., 1910, The somites of the chick, Am. J. Anat. 11: 55.Google Scholar
  243. Young, I. J., and Custod, J. T., 1972, Isolation of glycosaminoglycans and variation with age in the feline brain, J. Neurochem. 19: 923.Google Scholar
  244. Zugibe, F. T., 1962, The demonstration of the individual acid mucopolysaccharides in human aortas, coronary arteries and cerebral arteries. II. Identification and significance with aging, J. Histochem. Cytochem. 10: 448.Google Scholar
  245. Zwilling, E., 1968, Morphogenetic phases in development, Dev. Biol. Suppl. 2: 184.Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Bryan P. Toole
    • 1
  1. 1.Developmental Biology Laboratory, Departments of Medicine and Biological ChemistryHarvard Medical School at Massachusetts General HospitalBostonUSA

Personalised recommendations