Skip to main content

Neuronal Recognition in the Retinotectal System

  • Chapter

Part of the book series: Current Topics in Neurobiology ((CTNB))

Abstract

Regularity of association between cells is ubiquitous; it is the sine qua non of any organized system, but the nervous system shows a greater range and variety of regular and orderly cellular relationships than any other system. For example, glial cells and neurons are always found in association, and there are very many examples of exclusive association between neurons of specific types. If the same neurons are always found together, either lying in close proximity, forming nonsynaptic intercellular junctions, or making synaptic contact, the embryologist asks how such intercellular contacts developed. Is the intercellular relationship, regular as it may be, merely the result of a web of circumstances that cannot be traced directly to any single cell, or is the orderly relationship the direct result of the properties and activities of certain, identifiable cells? The question has some pragmatic interest—it is likely to be far more difficult to discover the mechanisms of cellular association if they are distributed through the developing system in time as well as space than if the mechanisms are intrinsic properties and functions of the associating cells. Such intrinsic mechanisms might therefore be expressed by cells that are experimentally isolated from the entire system in vitro or in cells that by transplantation are put into novel spatial and/or temporal contexts in the developing nervous system.

Map me no maps, sir, my head is a map, a map of the whole world.

Henry Fielding, 1730, Rape upon Rape, or the Justice Caught in His Own Trap, Act I, Scene v

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Attardi, D. G., and Sperry, R. W., 1963, Preferential selection of central pathways by regenerating optic fibers, Exp. Neurol. 7: 46.

    Article  Google Scholar 

  • Chung, S. H., Keating, M. J., and Bliss, T. V. P., 1974, Functional synaptic relations during the development of the retino-tectal projection in amphibians, Proc. R. Soc. London Ser. B 187: 449.

    Article  Google Scholar 

  • Crossland, W. J., Cowan, W. M., Rogers, L. A., and Kelly, J. P., 1974, The specification of the retino-tectal projection in the chick, J. Comp. Neurol. 155: 127.

    Article  Google Scholar 

  • Dixon, J. S., and Cronly-Dillon, J. R., 1972, The fine structure of the developing retina in Xenopus laevis, J. Embryol. Exp. Morphol. 28: 659.

    Google Scholar 

  • Gaze, R. M., and Jacobson, M., 1963, A study of the retino-tectal projection during regeneration of the optic nerve in the frog, Proc. Soc. London Ser. B 157: 420.

    Article  Google Scholar 

  • Gaze, R. M., and Keating, M. J., 1972, The visual system and “neuronal specificity,” Nature (London) 237: 375.

    Article  Google Scholar 

  • Gaze, R. M., and Sharma, S. C., 1970, Axial differences in the reinnervation of the goldfish optic tectum by regenerating optic nerve fibers, Exp. Brain Res. 10: 171.

    Article  Google Scholar 

  • Gaze, R. M., Chung, S. H., and Keating, M. J., 1972, Development of the retinotectal projection in Xenopus, Nature (London) New Biol. 236: 133.

    Article  Google Scholar 

  • Gaze, R. M., Keating, M. J., and Chung, S. H., 1974, The evolution of the retinotectal map during development in Xenopus, Proc. R. Soc. London Ser. B 185: 301.

    Article  Google Scholar 

  • Gottlieb, D. I., and Cowan, W. M., 1972, Evidence for a temporal factor in the occupation of available synaptic sites during the development of the dentate gyrus, Brain Res. 41: 452.

    Article  Google Scholar 

  • Hunt, R. K., and Jacobson, M., 1972, Development and stability of positional information in Xenopus retinal ganglion cells, Proc. Natl. Acad. Sci. USA 69: 780.

    Article  Google Scholar 

  • Hunt, R. K., and Jacobson, M., 1973, Specification of positional information in retinal ganglion cells of Xenopus: Assays for analysis of the unspecified state, Proc. Natl. Acad. Sci. USA 70: 507.

    Article  Google Scholar 

  • Hunt, R. K., and Jacobson, M., 1974, Neuronal specificity revisited, Curr. Top. Derr. Biol. 8: 203.

    Article  Google Scholar 

  • Jacobson, M., 1961, The recovery of electrical activity in the optic tectum of the frog during early regeneration of the optic nerve, J. Physiol. (London) 157: 27 P.

    Google Scholar 

  • Jacobson, M., 1962, The representation of the retina on the optic tectum of the frog: Correlation between retinotectal magnification factor and retinal ganglion cell count, Q. J. Exp. Physiol. 47: 170.

    Google Scholar 

  • Jacobson, M., 1968a, Development of neuronal specificity in retinal ganglion cells of Xenopus, Derr. Biol. 17: 202.

    Article  Google Scholar 

  • Jacobson, M., 1968b, Cessation of DNA synthesis in retinal ganglion cells correlated with the time of specification of their central connections, Dev. Biol. 17: 219.

    Article  Google Scholar 

  • Jacobson, M., 1970, Developmental Neurobiology, Holt, Rinehart and Winston, New York.

    Google Scholar 

  • Jacobson, M., and Gaze, R. M., 1965, Selection of appropriate tectal connections by regenerating optic nerve fibers in adult goldfish, Exp. Neurol. 13: 418.

    Article  Google Scholar 

  • Jacobson, M., and Hunt, R. K., 1973, The origins of nerve cell specificity, Sci. Am. 228: 26.

    Article  Google Scholar 

  • Jacobson, M., and Levine, R. L., 1975a, Plasticity in the adult frog brain: Filling the visual scotoma after excision or translocation of parts of the optic tectum, Brain Res. 88: 339.

    Article  Google Scholar 

  • Jacobson, M., and Levine, R. L., 1975b, Stability of implanted duplicate tectal positional markers serving as targets for optic axons in adult frogs, Brain Res. 92: 468.

    Article  Google Scholar 

  • Kahn, A. J., 1973, Ganglion cell formation in the chick neural retina, Brain Res. 63: 285.

    Article  Google Scholar 

  • Levine, R., and Jacobson, M., 1974, Deployment of optic nerve fibers is determined by positional markers in the frog’s brain, Exp. Neurol. 43: 527.

    Article  Google Scholar 

  • Mark, R. F., 1969, Matching muscles and motoneurones: A review of some experiments on motor nerve regeneration, Brain Res. 14: 245.

    Article  Google Scholar 

  • Mark, R. F., 1974, Memory and Nerve Cell Connections, Clarenden Press, Oxford.

    Google Scholar 

  • Scott, T. M., 1974, The development of the retinotectal projection in Xenopus laevis: An autoradiographic and degeneration study, J. Embryol. Exp. Morphol. 31: 409.

    Google Scholar 

  • Sharma, S. C., 1972, Reformation of retinotectal projections after various tectal ablations in adult goldfish, Exp. Neurol. 34: 171.

    Article  Google Scholar 

  • Skarf, B., and Jacobson, M., 1974, Development of binocularly driven single units in frogs raised with asymmetrical visual stimulation, Exp. Neurol. 42: 669.

    Article  Google Scholar 

  • Sperry, R. W., 1963, Chemoaffinity in the orderly growth of nerve fiber patterns and connections, Proc. Natl. Acad. Sci. USA 50: 703.

    Article  Google Scholar 

  • Sperry, R. W., 1965, Embryogenesis of behavioral nerve nets, in: Organogenesis ( R. C. DeHaan and H. Ursprung, eds.), pp. 161–186, Holt, Rinehart and Winston, New York.

    Google Scholar 

  • Straznicky, K, and Gaze, R. M., 1971, Growth of the retina in Xenopus laevis: an autoradiographic study, J. Embryol. Exp. Morph. 26: 69.

    Google Scholar 

  • Yoon, M., 1971, Reorganization of retinotectal projection following surgical operations on the optic tectum in goldfish, Exp. Neurol. 33: 395.

    Article  Google Scholar 

  • Yoon, M., 1972a, Reversibility of the reorganization of retinotectal projection in goldfish, Exp. Neurol. 35: 565.

    Article  Google Scholar 

  • Yoon, M., 1972b, Transposition of the visual projection from the nasal hemiretina onto the foreign rostral zone of the optic tectum in goldfish, Exp. Neurol. 37:451.

    Article  Google Scholar 

  • Yoon, M., 1973, Retention of the original topographic polarity by the 180’ rotated tectal reimplant in young adult goldfish, J. Physiol. (London) 233: 575.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Plenum Press, New York

About this chapter

Cite this chapter

Jacobson, M. (1976). Neuronal Recognition in the Retinotectal System. In: Barondes, S.H. (eds) Neuronal Recognition. Current Topics in Neurobiology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2205-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2205-4_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2207-8

  • Online ISBN: 978-1-4684-2205-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics