Acoustics-Old and New

  • R. Bruce Lindsay


Acoustics is the science of sound. But what is sound? In its historical sense, sound is a disturbance produced by an object or set of objects in a material medium which somehow manages to reach the ear and produces there the sensation called hearing. Just as the word optics, for the science of light, comes from the Green meaning sight, so acoustics comes from the Greek meaning hearing. These two important sensory windows on the world of our human experience (which interestingly are both of roughly the same sensitivity from the energy standpoint) have naturally for ages stimulated inquiry into how and why they work, an inquiry which has by no means reached completion even today. But just as light has come to mean much more than what we see, so sound has come to incorporate a much wider range of experience than what we hear. What we hear is plenty and indeed often too much for comfort and safety, but the sounds we do not hear (ultrasonics) provide a more far-reaching and fascinating branch of science.


Sound Wave Molecular Theory Speech Communication Reverberation Time Acoustical Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Sauveur. Systeme General des Intervalles des Sons. Paris: L’Academie Royale des Sciences (1701), p. 297 ff.Google Scholar
  2. 2.
    M. R. Cohen and I. E. Drabkin. A Source Book in Greek Science. New York: McGraw-Hill (1943), pp. 286–310.Google Scholar
  3. 3.
    R. B. Lindsay. Pierre Gassendi and the revival of atomism in the Renaissance. Am. J. Phys. 13 (1945), 235–242.CrossRefGoogle Scholar
  4. 4.
    Sir Isaac Newton. Philosophiae Naturalis Principia Mathematica. Joseph Streater, for the Royal Society (1687) London; Cambridge: 2nd ed. (1713); London: 3rd ed., (1726). The usually accepted standard English version is the revision of F. Cajori of the translation by A. Motte (1729) (Berkeley: University of California Press, 1946).Google Scholar
  5. 5.
    L. Euler. Dissertatio physica de sono (Basel, 1727). In Leonhardi Euleri. Opera Omnia (III). Leipzig: B. G. Teubner (1926), Vol. 1, p. 182 ff.Google Scholar
  6. L. Euler. De la propagation du son. Mem. Acad. Sci. Berlin 15 (1759), 185–209. Or cf. Leonhardi Euleri. Opera Omnia (III). Leipzig: B. G. Teubner (1926), Vol. 1, pp. 428-451.Google Scholar
  7. 6.
    D. Bernoulli. Reflexions et éclaircissements sur les nouvelles vibrations des cordes, exposées dans les memoires de l’Academie (1747 and 1748). Berlin: Royal Academy (1755), p. 147 ff.Google Scholar
  8. 7.
    J. L. Lagrange. Recherches sur la nature et la propagation du son. In Oeuvres de Lagrange. Paris: Gauthier-Villars (1867), Vol. 1, p. 39ff.Google Scholar
  9. 8.
    P. S. Laplace. Ann. Chim. Phys. 3 (1816), 238 ff.Google Scholar
  10. 9.
    J. Le R. d’Alembert. Recherches sur le courbe que forme une corde tendue mise en vibration. Berlin: Royal Academy (1747), p. 214ff.Google Scholar
  11. 10.
    G. Green. Trans. Cambridge Phil. Soc. 6 (1838), 403ff.Google Scholar
  12. 11.
    G. G. Stokes. Trans. Cambridge Phil. Soc. 8 (1845), 287.Google Scholar
  13. 12.
    G. R. Kirchhoff. Poggendorf Ann. Phys. 134 (1868), 177.CrossRefGoogle Scholar
  14. 13.
    S. Earashaw. On the mathematical theory of sound. Phil. Trans. Roy. Soc. London 150 (1858), 133ff.Google Scholar
  15. 14.
    W. J. M. Rankine. On the thermodynamic theory of waves of finite longitudinal disturbance. Phil. Trans. Roy. Soc. 160 (1870), 277–288.CrossRefGoogle Scholar
  16. 15.
    G. F. B. Riemann. Ueber die Fortpflanzung ebener Luftwellen von endlichen Schwingungsweite. Göttingen Abh. 8 (1858–1859), 43ff.Google Scholar
  17. 16.
    J. W. Strutt Lord Rayleigh. Theory of Sound. London: Macmillan (1877; 2nd ed. revised and enlarged 1894, reprinted 1926, 1929). First American ed. with a historical introduction by R. B. Lindsay (New York: Dover Publications, 1945).Google Scholar
  18. 17.
    J. W. Strutt Lord Rayleigh. On the cooling of air by radiation and conduction and on the propagation of sound. Phil. Mag. 47 (1899), 308ff.Google Scholar
  19. 18.
    J. J. Waterson. Phil. Trans. Roy. Soc. A 183 (1892), 1. See also J. S. Haidane (ed.). The Collected Scientific Papers of John James Waterston. Edinburgh: Oliver and Boyd (1928).CrossRefGoogle Scholar
  20. 19.
    J. H. Jeans. The Dynamical Theory of Gases. Cambridge: Cambridge University Press (1904), p. 303ff.CrossRefGoogle Scholar
  21. 20.
    A. Einstein. Ber. Preus. Akad. Wiss. (1920), 380-385.Google Scholar
  22. 21.
    G. W. Pierce. Proc. Am. Acad. Boston 60 (1925), 271–302.CrossRefGoogle Scholar
  23. 22.
    H. O. Kneser. Ann. Phys. 11 (1931), 761–776, 777-801.CrossRefGoogle Scholar
  24. 23.
    V. O. Knudsen. J. Acoust. Soc. Am. 6 (1935), 199–204.CrossRefGoogle Scholar
  25. 24.
    D. ter Haar. Men of Physics, L. D. Landau. Oxford: Pergamon Press (1965), Vol. 1, p. 62.Google Scholar
  26. 25.
    Brillouin memorial issue. J. Acoust. Soc. Am. 49 (1971), 937–1068.CrossRefGoogle Scholar
  27. 26.
    J. Henry. Acoustics applied to public buildings. In Annual Report of the Smithsonian Institution. Washington, D.C.: Smithsonian Institution (1856), p. 221ff.Google Scholar
  28. 27.
    W. C. Sabine. Collected Papers on Acoustics. Cambridge, Mass.: Harvard University Press (1927.) (Reprinted by New York: Dover Publications, 1964, with a new introduction by F. V. Hunt.)Google Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • R. Bruce Lindsay
    • 1
  1. 1.Department of PhysicsBrown UniversityUSA

Personalised recommendations