Skip to main content
  • 67 Accesses

Abstract

The divalent cation Ca+2 plays a central role in many physiological processes through its control of many properties and functions of cell membranes (1, 2). Morita and Chang (3) have reported that Ca+2 was required to maintain the motility of hamster spermatozoa incubated at 37°C, but that the motility of guinea pig, rat and rabbit spermatozoa was maintained in the absence of this ion. Effects of Ca+2 on rabbit spermatozoa might be expected, since rabbit oviduct fluid contains about 2 mM Ca+2, as originally shown by Holmdahl and Mastroianni (4). Increased respiration by rabbit spermatozoa in rabbit oviduct fluid has been demonstrated (5, 6), but this has been attributed to HCO3 in the fluid. The effect of Ca+2 in this regard has never been assessed. We have shown in this laboratory (7, 8) a direct effect of Ca+2 on the mitochondria in hypotonically treated rabbit sperm cells in which mitochondria are intact and accessible to added reagents: respiration is increased as Ca+2 is taken up in an energy-linked process which competes rather poorly for the high energy intermediates of oxidative phosphorylation. The physiological significance of this mitochondrial Ca+2 uptake is as obscure for the sperm cell as it is for other mammalian cells in which the uptake is far more efficient (9–11).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bianchi, C.P. (1968). “Cell Calcium,” Butterworths, London.

    Google Scholar 

  2. Manery, J.B. (1969). In: Mineral Metabolism (C.L. Cornar and F. Bronner.), Vol. 3, pp. 405 - 452, Academic Press, New York.

    Google Scholar 

  3. Morita, Z. and Chang, M.C. (1970). Biol. Reprod. 3, 169–179.

    PubMed  CAS  Google Scholar 

  4. Holmdahl, T.H. and Mastroianni, L., Jr. (1965). Fertil. Steril. 16, 587–595.

    PubMed  CAS  Google Scholar 

  5. Folly, C.W. and Williams, W.L. Proc. Soc. Exp. Biol. Med. 126, 634–637.

    Google Scholar 

  6. Brackett, B.G. (1968). Sixth Cong. Intern. Reprod. Anim. Insem. Artif., Paris JL, 43–46.

    Google Scholar 

  7. Storey, B.T. and Keyhani, E. (1973). FEBS Letters 37, 33–36.

    Article  PubMed  CAS  Google Scholar 

  8. Storey, B.T. and Keyhani, E. (1974). Fertil. Steril. 25, 976–984.

    PubMed  CAS  Google Scholar 

  9. Chance, B. (1965). J. Biol. Chem. 240, 2729–2748.

    Google Scholar 

  10. Lehninger, A.L., Carafoli, E., and Rossi, C.S. (1967), Advan. Enzymol. 29, 259–320.

    CAS  Google Scholar 

  11. Lehninger, A.L. (1970). Biochem. J. 119, 129–138.

    PubMed  CAS  Google Scholar 

  12. Morton, B., Harrigan-Lum, J., Albagli, L., and Jooss, T. (1974). Biochem. Biophys. Res. Comm. 56, 372–379.

    Article  PubMed  CAS  Google Scholar 

  13. Garbers, D.L., First, N.L., Sullivan, J.J., and Lardy, H.A. (1971). Biol. Reprod. 5., 336–339.

    Google Scholar 

  14. Hoskins, D.D. (1973). J. Biol. Chem. 248, 1135–1140.

    Google Scholar 

  15. Tash, J.S. and Mann, T. (1973). Proc. Roy. Soc. London B 184, 109–114.

    Google Scholar 

  16. Garbers, D.L., First, N.L., and Lardy, H.A. (1973). Biol. Reprod. 8, 589–598.

    PubMed  CAS  Google Scholar 

  17. Morton, B.E. and Chang, T.S.K. (1973). J. Reprod. Fert. 35, 255–263.

    Google Scholar 

  18. Shoenfeld, C., Amelar, R.D., and Dubin, L. (1973). Fertil. Steril. 24, 772–775.

    Google Scholar 

  19. Keyhani, E. and Storey, B.T. (1973). Biochim. Biophys. Acta 305, 557–569.

    Article  PubMed  CAS  Google Scholar 

  20. Scarpa, A. (1972). Methods Enzymol. 24, 343–351,

    Google Scholar 

  21. Chance, B. (1972). Methods Enzymol, 24, 322–335.

    Article  PubMed  CAS  Google Scholar 

  22. Chance, B. and Williams, G.R. (1956). Advan. Enzymol. 17, 65–134.

    CAS  Google Scholar 

  23. Reed, P.W. and Lardy, H.A. (1972). J. Biol. Chem. 247, 6970–6977.

    Google Scholar 

  24. Tibbs, J. (1962). In: Spermatozoan Motility11 (D.W. Bishop, ed.), pp. 233–250, Publication No. 72, Amer. Assoc. Advance. Sei., Washington, D.C.

    Google Scholar 

  25. Vinogradov, A., Scarpa, A., and Chance, B. (1972). Arch. Biochem. Biophys. 152, 646–652.

    Google Scholar 

  26. Chasin, M., Harris, D.N., Phillips, M.B., and Hess, S.M. (1972). Biochem. Pharmacol. 21, 2443–2450.

    Article  PubMed  CAS  Google Scholar 

  27. Hoskins, D.D., Stephens, D.T., and Hall, M.L. (1974). J. Reprod. Fert. 37, 131–133.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Storey, B.T. (1975). Calcium and Cyclic AMP Effects on Rabbit Epididymal Spermatozoa. In: Vassileva-Popova, J.G. (eds) Physical and Chemical Bases of Biological Information Transfer. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2181-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2181-1_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2183-5

  • Online ISBN: 978-1-4684-2181-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics