Advertisement

Multiphonon Absorption in KCl, NaCl, and ZnSe

  • J. M. Rowe
  • J. A. Harrington
Part of the Optical Physics and Engineering book series (OPEG)

Abstract

The frequency and temperature dependence of the absorption coefficient has been measured in NaCl, KCl, and ZnSe using dual beam infrared spectroscopy and tunable CO2 laser calorimetry. The frequency dependent measurements indicate a difference in slope of the log of absorption versus frequency curves between single crystal and the same host hardened by the addition of a small amount of impurities or hot press forged. The temperature dependence of the absorption has been measured from room temperature to near 100K. These measurements extend our earlier high temperature results and thus make possible a more complete comparison between theory and experiment. The results indicate that both an elementary Bose-Einstein treatment and current multiphonon theories are in reasonable agreement with experimental data.

Keywords

Zinc Selenide Frequency Dependent Measurement Multiphonon Process Transparent Solid High Purity Single Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. F. Deutsch, J. Phys. Chem. Solids 34, 2091 (1973).ADSCrossRefGoogle Scholar
  2. 2(a).
    L. L. Boyer, J. A. Harrington, M. Hass, and H. B. Rosenstock, Phys. Rev., to be published;Google Scholar
  3. (b).
    J. R. Hardy and B. S. Agrawal, Appl. Phys. Lett. 22, 236 (1973);ADSCrossRefGoogle Scholar
  4. (c).
    M. Sparks and L. J. Sham, Phys. Rev. B8, 3037 (1973);ADSCrossRefGoogle Scholar
  5. (d).
    T. C. McGill, R. W. Hellwarth, M. Mangir, and H. V. Winston, J. Phys. Chem. Solids 34, 2105 (1973);ADSCrossRefGoogle Scholar
  6. (e).
    B. Bendow, S. C. Ying, and S.P. Yukon, Phys. Rev. B8, 1679 (1973);ADSCrossRefGoogle Scholar
  7. (f).
    K. V. Namjoshi and S. S. Mitra, Phys. Rev. B9, 815 (1974);ADSCrossRefGoogle Scholar
  8. (g).
    D. L. Mills and A. A. Maradudin, Phys. Rev. B8 1617 (1973);ADSCrossRefGoogle Scholar
  9. (h).
    H. B. Rosenstock, Phys. Rev. B9, 1963 (1974).ADSCrossRefGoogle Scholar
  10. 3(b).
    T. C. McGill and H. V. Winston, Sol. St. Com. 13, 1459 (1973);CrossRefGoogle Scholar
  11. (b).
    M. Sparks and L. J. Sham, Phys. Rev. Lett. 31, 714 (1973);ADSCrossRefGoogle Scholar
  12. (c).
    A. A. Maradudin and D. L. Mills, Phys. Rev. Lett. 31, 718 (1973);ADSCrossRefGoogle Scholar
  13. (d).
    K. V. Namjoshi, S. S. Mitra, B. Bendow, J. A. Harrington, and D. L. Stierwalt, Appl. Phys. Lett. 26, 41 (1975);ADSCrossRefGoogle Scholar
  14. 4.
    J. A. Harrington and M. Hass, Phys. Rev. Lett. 31, 710 (1973).ADSCrossRefGoogle Scholar
  15. 5.
    L. H. Skolnik, H. G. Lipson, B. Bendow, and J. T. Schott, Appl. Phys. Lett. 25, 442 (1974).ADSCrossRefGoogle Scholar
  16. 6.
    D. W. Pohl and P. F. Meier, Phys. Rev. Lett. 32, 58 (1974)ADSCrossRefGoogle Scholar
  17. T. F. McNelly and D. W. Pohl, Phys. Rev. Lett. 32, 1305 (1974).ADSCrossRefGoogle Scholar
  18. 7.
    M. Hass, J. W. Davisson, P. H. Klein, and L. L. Boyer, J. Appl. Phys. 45, 3959 (1974).ADSCrossRefGoogle Scholar
  19. 8.
    J. W. Davisson, J. Mat. Sci. 9, 1701 (1974).ADSCrossRefGoogle Scholar
  20. 9.
    Obtained from Dr. Joel Martin, Oklahoma State University.Google Scholar
  21. 10.
    C. J. Duthler, J. Appl. Phys. 45, 2668 (1974).ADSCrossRefGoogle Scholar
  22. 11.
    W. G. Spitzer in Semiconductors and Semimetals, Vol. 3, edited by R.K. Willardson and A.C. Beer, Academic Press, NY (1967).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • J. M. Rowe
    • 1
  • J. A. Harrington
    • 1
  1. 1.The University of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations