Advertisement

Temperature Dependence of Multiphonon Absorption in Fluorite Crystals

  • H. G. Lipson
  • B. Bendow
  • S. S. Mitra
Part of the Optical Physics and Engineering book series (OPEG)

Abstract

We report measurements of the absorption coefficients of CaF2, SrF2 and BaF2 in the frequency range ∼700 to ~1600 cm−1, at temperatures ranging from 300 to 800°K. The frequency dependence is found to be nearly exponential-like in the temperature range investigated, in agreement with existing multiphonon theories. A detailed analysis of the measured temperature dependence, utilizing the theories of Bendow, and of Namjoshi and Mitra, shows that the observed behavior conforms overall to that predicted for intrinsic multiphonon processes. The role of the temperature dependence of the phonon spectrum in suppressing the temperature dependence of the multiphonon absorption is also investigated.

Keywords

Phonon Frequency Longitudinal Optical Optical Phonon Frequency Room Temperature Absorption Fluorite Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See, for example, Proceedings of the 1972 and 1973 Conference on Electronic Materials, published in the Feb. and May issues of J. Elec. Mats. 2 and (1973, 1974); and the Proceedings of the First, Second and Third Conferences on Infrared Laser Window Materials (AFCRL, Bedford, Mass., 1972, 1973, 1974 ).Google Scholar
  2. 2.
    T. F. Deutsch, J. Phys. Chem. Solids 34, 2091 (1973).ADSCrossRefGoogle Scholar
  3. 3.
    K. V. Namjoshi, S. S. Mitra, B. Bendow, J. A. Harrington, and D. L. Stierwalt, Appl. Phys. Letters, 26, 41 (1975)ADSCrossRefGoogle Scholar
  4. 4.
    M. Sparks and L. J. Sham, Solid State Comm., 11, 1451 (1972);ADSCrossRefGoogle Scholar
  5. D. L. Mills and A. A. Maradudin, Phys. Rev. B8, 1617 (1973);ADSCrossRefGoogle Scholar
  6. B. Bendow, S. C. Ying and S. P. Yukon, Phys. Rev. B8, 1679 (1973);ADSCrossRefGoogle Scholar
  7. K. V. Namjoshi and S. S. Mitra, Phys. Rev. B2, 815 (1974); Solid State Commun. 1, 317 (1974).ADSGoogle Scholar
  8. 5.
    National Bureau of Standards RP1080 (1938).Google Scholar
  9. 6.
    K. V. Namjoshi and S. S. Mitra, Phys. Rev. B 2, 815 (1974);ADSCrossRefGoogle Scholar
  10. K. V. Namjoshi and S. S. Mitra, Solid State Commun. 317 (1974).Google Scholar
  11. 7.
    B. Bendow, Appl. Phys. Letters, 12, 133 (1973).ADSCrossRefGoogle Scholar
  12. 8.
    I. F. Chang, Ph.D. Thesis, University of Rhode Island 1968;Google Scholar
  13. 8.
    R. P. Lowndes, J. Phys. C. (London) 4, 3083 (1971).Google Scholar
  14. 9.
    See for example, S. S. Mitra in “Optical Properties of Solids” ed. S. Nudelman and S. S. Mitra, Plenum Press, New York 1969, P. 385.Google Scholar
  15. 10.
    See Ref. 9, p. 421.Google Scholar
  16. 11.
    See Ref. 9, p. 389.Google Scholar
  17. 12.
    S. S. Mitra and O. Brafman, unpublished. The ex- perimental value of YR of SrF2 used in this calculation is 1. 9.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • H. G. Lipson
    • 1
  • B. Bendow
    • 1
  • S. S. Mitra
    • 2
  1. 1.Air Force Cambridge Res. Labs.Hanscom AFBUSA
  2. 2.Department of Electrical EngineeringUniversity of Rhode IslandKingstonUSA

Personalised recommendations