Optical Absorption by Alkali Halides: Possible Structure in the Multiphonon Region

  • L. L. Boyer
  • James A. Harrington
  • Marvin Hass
  • Herbert B. Rosenstock
Part of the Optical Physics and Engineering book series (OPEG)


Earlier theories of the multiphonon absorption in insulators have either treated anharmonicity as a perturbation rather than exactly, or have ignored the lattice in favor of a single-oscillator model. Here we attempt to incorporate the important features of both models into a single theory applicable to many substances. For the heavier alkali halides, the calculation predicts some structure in the absorption spectrum in the “transparent” region well above the reststrahl line. The nature of this structure is examined in detail by focusing specifically upon results for the potassium halides. The amount of structure is shown to be related to the amount of overlap between the optic and acoustic branches of the phonon dispersion curves. Experimental possibilities for observing the multiphonon bumps are discussed.


Optical Absorption Dissociation Energy Morse Potential Alkali Halide Phonon Dispersion Curve 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.R. Hardy and B.S. Agrawal, Appl. Phys. Lett. 22, 236 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    a) L.J. Sham and M. Sparks, Phys. Rev. B9, 827 (1974);(b) M. Sparks, Xonics Inc., Technical Progress Final Report, 1972, under contract no. DAHC 15-72-C-0129 (unpublished); (c) M. Sparks, Phys. Rev. B, to be published.Google Scholar
  3. 3.
    T.C. McGill, R.W. Hellwarth, M. Mangir and H.V. Winston, J. Phys. Chem. Solids 34, 2105 (1973).ADSCrossRefGoogle Scholar
  4. 4.
    a) B. Bendow, S.C. Ying, and S.P. Yukon, Phys. Rev. B8, 1679 (1973); (b) B. Bendow and S.C. Ying, Phys. Lett. 42A, 359 (1973); (c) B. Bendow, S.P. Yukon, and S.C. Ying, Phys. Rev. B., to be published.Google Scholar
  5. 5.
    K.V. Namjoshi and S.S. Mitra, Phys. Rev., B9, 1617 (1974).CrossRefGoogle Scholar
  6. 6.
    a) D.L. Mills and A.A. Maradudin, Phys. Rev. B8, 1617 (1973); (b) A.A. Maradudin and D.L. Mills, Phys. Rev. Lett. 31, 718 (1973); (c) D.L. Mills and A.A. Maradudin, Phys. Rev B., to be published.Google Scholar
  7. 7.
    a) H.B. Rosenstock, Phys. Rev. B9, 1963 (1974); (b) Proceedings Third Conf. on High Power Laser Window Materials, Nov. 1974 (Air Force Cambridge, Research Lab., TR-74-0085(1), C.A. Pitha and B. Bendow, editors ) p. 205.Google Scholar
  8. 8.
    L.L. Boyer, J.A. Harrington, M. Hass, and H.B. Rosenstock, Phys. Rev. B., to be published.Google Scholar
  9. 9.
    P.M. Morse., Phys. Rev. 34, 57 (1929); (see also Ref. 7 for a review of the quantum mechanics of the Morse potential).Google Scholar
  10. 10.
    K. Scholz, Z. Phys. 78, 751 (1932).ADSMATHCrossRefGoogle Scholar
  11. 11.
    L. Pauling and E.B. Wilson, Introduction to Quantum Mechanics (McGraw-Hill, 1935 ) p. 82.Google Scholar
  12. 12.
    W. Buhrer, Phys. Stat. Sol. 41, 789 (1970).ADSCrossRefGoogle Scholar
  13. 13.
    A.N. Basu and S. Sengupta, Phys. Rev. B8, 2982 (1973).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • L. L. Boyer
    • 1
  • James A. Harrington
    • 1
  • Marvin Hass
    • 1
  • Herbert B. Rosenstock
    • 1
  1. 1.Naval Research LaboratoryUSA

Personalised recommendations