Measuring Photoelastic and Elastic Constants of Transparent Materials by Application of Static Stress

  • A. Feldman
  • R. M. Waxler
  • D. Horowitz
Part of the Optical Physics and Engineering book series (OPEG)


The shift of Twyman-Green and Fizeau fringes as a function of applied uniaxial and hydrostatic stress have been measured on transparent solids. These data permit us to calculate all the photo-elastic and elastic constants of a material. At the wavelength 10.6 μm, where fringe shifts are small, we have measured photo-elastic constants using a modified Twyman-Green interferometer, which is capable of detecting fringe shifts ~0.01 λ by electronic means. Data on polycrystalline ZnSe grown by chemical vapor deposition are presented.


Elastic Constant Hydrostatic Stress Transparent Material Single Crystal Data Pyroelectric Detector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. L. Fabelinskii, Molecular Scattering of Light, Plenum Press, New York (1968).Google Scholar
  2. 2.
    A. A. Maradudin and E. Burstein, Phys. Rev. 164, 1081 (1967).ADSCrossRefGoogle Scholar
  3. 3.
    H. Osterberg and J. W. Cookson, Phys. Rev. 51, 1096 (1937).ADSMATHCrossRefGoogle Scholar
  4. 4.
    E. L. Kerr, Phys. Rev. A 4, 1195 (1971).ADSCrossRefGoogle Scholar
  5. 5.
    A. Feldman, D. Horowitz and R. M. Waxier, IEEE J. Quant. Elec. QE-9, 1054 (1973).Google Scholar
  6. 6.
    A. Feldman, Phys. Rev. 150, 748 (1966).ADSCrossRefGoogle Scholar
  7. 7.
    A. Gavini and M. Cardona, Phys. Rev. 177, 1351 (1969).ADSCrossRefGoogle Scholar
  8. 8.
    D. K. Biegelsen, Phys. Rev. Letters 32, 1196 (1974).ADSCrossRefGoogle Scholar
  9. 9.
    J. A. Van Vechten, Phys. Rev. 182, 891 (1969).ADSCrossRefGoogle Scholar
  10. 10.
    S. H. Wemple and M. DiDomenico, Jr., Phys. Rev. B 1, 193 (1970).ADSCrossRefGoogle Scholar
  11. 11.
    D. L. Camphausen, G. A. N. Connell, and W. Paul, Phys. Rev. Letters 26, 184 (1971).ADSCrossRefGoogle Scholar
  12. 12.
    Y. F. Tsay, S. S. Mitra and B. Bendow, Phys. Rev. B 10, 1476 (1974).ADSCrossRefGoogle Scholar
  13. 13.
    R. M. Martin, Phys. Rev. B 1, 4005 (1970).ADSCrossRefGoogle Scholar
  14. 14.
    R. W. Dixon, J. Appl. Phys. 38, 5149 (1967).ADSCrossRefGoogle Scholar
  15. 15.
    B. Bendow, P. D. Gianino, A. Hordvik and L. H. Skolnik, Optics Comm. 7, 219 (1973).ADSCrossRefGoogle Scholar
  16. 16.
    S. A. Kulin and H. Posin, in Third Conference on High Power Infrared Laser Windows, Nov. 1973, ARCRL Special Reports, No. 174, p. 463, Ed. by C. A. Pitha, A. Armington, and H. Posin.Google Scholar
  17. 17.
    R. W. Dixon and M. G. Cohen, Appl. Phys. Letters 8, 205 (1966).ADSCrossRefGoogle Scholar
  18. 18.
    D. K. Biegelsen, Appl. Phys. Letters 22, 221 (1973).ADSCrossRefGoogle Scholar
  19. 19.
    A. A. Giardini, J. Opt. Soc. Amer. 47, 726 (1957).ADSGoogle Scholar
  20. 20.
    F. Twyman and J. W. Perry, Proc. Phys. Soc. (London) 34, 151 (1922).Google Scholar
  21. 21.
    A. Feldman, I. Malitson, D. Horowitz, R. M. Waxler and M. Dodge in Laser Induced Damage in Optical Materials: 1974, NBS Special Publication 414, Ed. by A. J. Glass and A. H. Guenther (U.S. GPO SD Catalogue No. C13.10: 414 ) p. 141.Google Scholar
  22. 22.
    D. Berlincourt, H. Jaffe and L. R. Shiozawa, Phys. Rev. 129, 1009 (1963).ADSCrossRefGoogle Scholar
  23. 23.
    W. Voigt, Lehrbuch der Kristallphysik, p. 962 ( Leipzig: Teubner, 1928 ).MATHGoogle Scholar
  24. 24.
    A. Reuss, Z. angew. Math. Mech. 9, 55 (1929).Google Scholar
  25. 25.
    R. W. Hill, Proc. Phys. Soc. (London) A 65, 349 (1952).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • A. Feldman
    • 1
  • R. M. Waxler
    • 1
  • D. Horowitz
    • 1
  1. 1.National Bureau Of StandardsUSA

Personalised recommendations