A 10.6 Micron Modulated Light Ellipsometer

  • S. D. Allen
  • A. I. Braunstein
  • M. Braunstein
  • J. C. Cheng
  • L. A. Nafie
Part of the Optical Physics and Engineering book series (OPEG)

Abstract

A modulated light ellipsometer capable of measurements from the Ultraviolet to the infrared with particular emphasis on 10.6 μm has been developed for measuring the refractive index and absorption coefficient of bulk materials and thin films. This paper describes in detail the operating principles of the Hughes Research Laboratories ellipsometer and the specialized optical components required to permit operation of the instrument at 10.6 μm: a waveguide CO2 laser, ZnSe wiregrid polarizers, ZnSe acousto-optic modulator, and PbSnTe detector. In contrast to manual ellipsometers, phasesensitive amplifiers are employed to process the signal received at the detector, and the standard ellipsometric parameters are derived from the signals at the fundamental and second harmonic of the modulator and the DC signal. An analysis of sources of error and the limits of sensitivity of this instrument will be presented.

Keywords

Zinc Quartz Fluoride Tungsten Iodide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Feldman, I. Malitson, D. Horowitz, R.M. Waxier, and M. Dodge, Laser Induced Damage in Optical Materials, NBS Special Publication (1974).Google Scholar
  2. 2.
    S.N. Jasperson, D.K. Burge, and R.C. O’Handley, Surface Science 37, 548–558 (1973);ADSCrossRefGoogle Scholar
  3. S.N. Jasperson and S. Schnatterly, Rev. Sci. Instrum. 40, 761 (1969).ADSCrossRefGoogle Scholar
  4. 3.
    J.C. Kemp, J. Opt. Soc. Am. 59, 950 (1969).ADSGoogle Scholar
  5. 4.
    R.L. Abrams and W.B. Bridges, IEEE J. Quantum Electron. QE9, 940 (1973);ADSCrossRefGoogle Scholar
  6. R.L. Abrams, Appl. Phys. Lett. 25, 364 (1974).Google Scholar
  7. 5.
    H.L. Garvin, J.E. Kiefer, and S. Somekh, “Wire-Grid Polarizers for 10.6 pm Radiation,” Proc. of the 1973 IEEE/OSA Conf. on Laser Engineering and Applications, Washington, D.C., May 30-June 1, 1973, p. 100.Google Scholar
  8. 6.
    M. Braunstein and J.E. Rudisill, Final Report, AFML, Contract F33615–73-C-5044, Wright-Patterson AFB, Ohio (1974).Google Scholar
  9. 7.
    L.H. DeVaux and H. Kimura, Final Technical Report, Contract DAAK02–72-C-0348, Night Vision Laboratory, U.S. Army Electronics Command, Fort Belvoir, Virginia, December 1973.Google Scholar
  10. 8.
    F.L. McCrackin, NBS Technical Note No. 479 (1969).Google Scholar
  11. 9.
    J.C. Cheng, L.A. Nafie, S.D. Allen, and A.I. Braunstein, “Infrared Photo-Elastic Modulators,” submitted to Appl. Opt.Google Scholar
  12. 10.
    C.A. Feldman, I.H. Malitson, D. Horowitz, R.M. Waxier, and M.J. Dodge, Proc. Fourth Annual Conf. on Infrared Laser Window Materials, Tuscon, Arizona (1974). Published in the Proceedings.Google Scholar
  13. 11.
    S.D. Allen, M. Braunstein, C. Giuliano, and V. Wang, “Laser Induced Damage in Optical Materials,” NBS Special Publication No. 414 (1974);Google Scholar
  14. M. Braunstein, Proc. of the Third Laser Window Conf., Hyannis, Mass. (1973).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • S. D. Allen
    • 1
  • A. I. Braunstein
    • 1
  • M. Braunstein
    • 1
  • J. C. Cheng
    • 1
    • 2
  • L. A. Nafie
    • 1
    • 2
  1. 1.Hughes Research LaboratoriesMalibuUSA
  2. 2.University of Southern CaliforniaUSA

Personalised recommendations