Advertisement

Second-Harmonic Generation of Intense Laser Light in Transparent Centrosymmetric Solids

  • Stanisław Kielich
  • Roman Zawodny
Part of the Optical Physics and Engineering book series (OPEG)

Abstract

The authors analyze the feasibility of second-harmonic generation (SHG) intensity amplification in centrosymmetric solids by:
  1. 1.

    Nonlinear spatial dispersion, related with electric and magnetic multipolar transitions;

     
  2. 2.

    Changes in nonlinear susceptibilities self-induced by strong laser light intensity;

     
  3. 3.

    Lowering of the intrinsic crystal symmetry e.g. inversion centre destruction by a DC electric or magnetic field, or crossed fields;

     
  4. 4.

    Coupling between self-light-intensity dependent effects and DC applied-field induced effects. Supplementing hitherto considered SHG mechanisms, these new processes are described in terms of 5-th and 6-th rank polar and axial tensors of electro-electric and magneto-electric nonlinear susceptibilities. The nonzero and independent elements of these new tensors are calculated, thus pinpointing those classes of centrosymmetric crystals where SHG can occur with amplified intensity.

     

Keywords

Polar Tensor Nonlinear Susceptibility Axial Tensor Centrosymmetric Crystal Cesium Fluoride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.W. Terhune, P.D. Maker and C.M. Savage, Phys.Rev.Letters, 8 404, /1962/.ADSCrossRefGoogle Scholar
  2. 2.
    J.E. Bjorkholm, A.E. Siegman. Phys.Rev. 154 851, /1967/.ADSCrossRefGoogle Scholar
  3. 3.
    C.C. Wang and A.N. Duminski, Phys.Rev.Letters, 20 668, /1968/.ADSCrossRefGoogle Scholar
  4. 4.
    N. Bloembergen, R.K. Chang, S.S. Jha and C.H. Lee, Phys.Rev. 174 813, /1968/.ADSCrossRefGoogle Scholar
  5. 5.
    I.T. Bloembergen and P.S. Pershan, Phys.Rev., 128, 606 /1962/.MathSciNetADSMATHCrossRefGoogle Scholar
  6. 6.
    P.A. Franken and J.F. Ward, Rev.Mod.Phys., 35 23, /1963/.ADSMATHCrossRefGoogle Scholar
  7. 7.
    P.S. Pershan, Phys.Rev., 130 919, /1963/.MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    E. Adler, Phys.Rev., 134 A728, /1964/.ADSCrossRefGoogle Scholar
  9. 9.
    S.S. Jha, Phys.Rev., 140 A2020, /1965/;ADSCrossRefGoogle Scholar
  10. S.S. Jha, Phys.Rev., 145 500 /1966/;ADSCrossRefGoogle Scholar
  11. S.S. Jha and C.S. Warke, Phys.Rev. 153 751, /1967/.ADSCrossRefGoogle Scholar
  12. 10.
    J. Rudnick and E.A. Stern, Phys.Rev. 4B 4274, /1971/.ADSCrossRefGoogle Scholar
  13. 11.
    R.C. Miller, Phys.Rev. 14 A1319 /1964/;Google Scholar
  14. R.C. Miller and A. Savage, Appl.Phys.Lett. 9 169 /1966/;ADSCrossRefGoogle Scholar
  15. L.S. Goldberg and J. M. Schnur, Radio and Electronic Engineer, 39 279 /1970/;CrossRefGoogle Scholar
  16. J.P. Van Der Ziel and N. Bloembergen, Phys.Rev., 6A A1662, /1964/;CrossRefGoogle Scholar
  17. W.A. Nordland, Ferroelectrics,. 5 287 /1973/.CrossRefGoogle Scholar
  18. 12.
    V.S. Suvorov and A.S. Sonin, Zh.Eksperim. i Teor.Fiz. 84 1044 /1968/;Google Scholar
  19. I.A. Pleshakov, V.S. Suvorov and A.A. Flimonov, Izv.Akad.Nauk SSSR /1971/ 1856.Google Scholar
  20. 13.
    H. Vogt, Phys.Stat.Solidi 5 705 1973;ADSCrossRefGoogle Scholar
  21. H. Vogt, Appl.Phys. 5 85 1974.ADSCrossRefGoogle Scholar
  22. 14.
    H. Rabin, Int.Conference on Science and Technology of Nonmetallic Crystals, New Delhi, India, January 13–17, 1969.Google Scholar
  23. 15.
    S.A. Akhmanov, R.V. Khokhlov and A.P. Sukhorukov, Laser Handbuch Ed.F.T. Arecchi and E.O. Schulz-Dubois North-Holland, Amsterdam 1972, Vol. 2, p. 1151.Google Scholar
  24. 16.
    S. Kielich, Opto-electronics 2 1970 5; 1971 5.CrossRefGoogle Scholar
  25. 17.
    J.G. Bergman,Jr. and S.K. Kurtz, Materials Science and Engineering,. 5 235 1969;CrossRefGoogle Scholar
  26. R.L. Byer, Ann.Rev.Materials Science, 4 147 1974.ADSCrossRefGoogle Scholar
  27. 18.
    S. Kielich, Opto-electronics 2 1970 125; Ferroelectrics 4 1972 257 and references therein.Google Scholar
  28. 19.
    S. Kielich, Proc.Phys.Soc., 86 709 1965;ADSCrossRefGoogle Scholar
  29. S. Kielich, Acta Phys.Polon. 22 875 1966.Google Scholar
  30. 20.
    S. Kielich and R. Zawodny, Acta Phys.Polonica, A43 579 1973;Google Scholar
  31. S. Kielich and R. Zawodny, Optica Acta 20 867 1973.ADSCrossRefGoogle Scholar
  32. 21.
    H.G. Hafele, R. Grisar, C. Irslinger, H. Wacharering, S.D. Smith, R.B. Denis and B.S. Wherrett, J.Phys. C4 2637 1971.Google Scholar
  33. 22.
    S. Kielich, Optics Communications, 2 197 1970.ADSCrossRefGoogle Scholar
  34. 23.
    S.A. Akhmanov, personal information, Moscov, May 1974.Google Scholar
  35. 24.
    J.M. Chen, J.R. Bower and S. Wang, Optics Communications 1973 132.Google Scholar
  36. 25.
    I. Freund and L. Kopf, Phys.Rev.Letters, 24 1017 1970.ADSCrossRefGoogle Scholar
  37. 26.
    S. Kielich, J.R. Lalanne and F.B. Martin, Phys.Rev.Letters 26 1295 1971;ADSCrossRefGoogle Scholar
  38. J. Raman, Spectroscopy 1 119 1973;Google Scholar
  39. Kielich and M.Kozierowski, Optics Communications, 4 395 1972.ADSCrossRefGoogle Scholar
  40. 27.
    G. Dolino, J. Lajzerowicz and M. Vallade, Phys.Rev. B2 2194 1970;ADSGoogle Scholar
  41. G. Dolino, Ibid, B6 4025 1972.Google Scholar
  42. 28.
    D. Weinmann and H. Vogt, Phys.Stat.Solidi a 23. 463 1974.ADSCrossRefGoogle Scholar
  43. 29.
    I. Freund, Phys.Rev.Letters, 21 1404 1968;ADSCrossRefGoogle Scholar
  44. C.L. Tang and P.P. Bey, IEEE J.Quantum Electronics, 9 9 1973.ADSCrossRefGoogle Scholar
  45. 30.
    W. Yu and R.R. Alfano, private communication, September, 1974.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Stanisław Kielich
    • 1
  • Roman Zawodny
    • 1
  1. 1.Nonlinear Optics Division, Institute of PhysicsA. Mickiewicz UniversityPoznańPoland

Personalised recommendations