Advertisement

Light Scattering from Composition Fluctuations in the Superspinodal Region of a Phase-Separating Oxide Glass

  • R. K. Mohr
  • P. B. Macedo
Part of the Optical Physics and Engineering book series (OPEG)

Abstract

Light scattering was used to observe composition fluctuations at temperatures in the single phase region of a phase-separating borosilicate glass. We report the first study of equilibrium fluctuations and the kinetics of their growth by means of light scattering from quenched samples. From the results the spinodal temperature for the glass is obtained. At each temperature observed the relaxation time for the fluctuations was determined. The results are discussed in terms of the classical and mode-mode coupling theories of critical fluctuations.

Keywords

Relaxation Time Heat Treatment Temperature Single Phase Region Laxation Time Critical Fluctuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Chu, Ann Rev. Phys. Chem. 21, 145 (1970) and references therein.ADSCrossRefGoogle Scholar
  2. 2.
    G.B. Benedek, in Polarisation Matiere et Rayonnement, edited by Societe Francais de Physique (Presses Universitaires de France, Paris, 1969), p. 49.Google Scholar
  3. 3.
    B. Chu, F.J. Schoens and M.E. Fisher, Phys. Rev. 185, 219 (1969)ADSCrossRefGoogle Scholar
  4. 4.
    A. Sarkar, G.R. Srinivasan, P.B. Macedo and V. Volterra, Phys. Rev. Letters 29, 631 (1972).ADSCrossRefGoogle Scholar
  5. 5.
    See for instance, N.S. Andreev and E.A. Porai-Koshits, Discussion Faraday Soc. 50, p. 135 (1970).CrossRefGoogle Scholar
  6. 6.
    W. Haller, J.H. Simmons, and A. Napolitano, J. Amer. Ceram. Soc. 54, 299 (1971).CrossRefGoogle Scholar
  7. 7.
    N. Balitactac, Private Communication.Google Scholar
  8. 8.
    J. Schroeder, R. Mohr, C.J. Montrose, and P.B. Macedo, J. Non-Cryst. Solids, 13, 313 (1973).CrossRefGoogle Scholar
  9. 9.
    J. Schroeder, R. Mohr, P.B. Macedo, C.J. Montrose, J. Amer. Ceram. Soc. 56, 510 (1973).CrossRefGoogle Scholar
  10. 10.
    L.D. Landau and E.M. Liftshitz, Statistical Physics (Pergamon Press, Ltd., London 1958) p. 265.MATHGoogle Scholar
  11. 11.
    L.P. Kadanoff, W. Gotze, D. Hamblen, R. Hecht, E.A.S.Lewis, V.V. Paleiauskas, M. Rayl, J. Swift, D. Aspnes, J. Kane, Rev. Mod. Phys. 39, 395 (1967).ADSCrossRefGoogle Scholar
  12. 12.
    J.H. Simmons and P.B. Macedo, J. Non-Cryst. Solids 11, 357 (1973).ADSCrossRefGoogle Scholar
  13. 13.
    W. Kauzmann, Cnem. Rev. 43, 219 (1948).CrossRefGoogle Scholar
  14. 14.
    J.H. Simmons and P.B. Macedo, J. Chem. Phys. 5 2914 (1970).ADSCrossRefGoogle Scholar
  15. 15.
    K. Kawasaki, Ann. Phys, (N.Y.) 61, 1 (1970).ADSCrossRefGoogle Scholar
  16. 16.
    J.W. Cahn, Trans. AIME 242, 166 (1968).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • R. K. Mohr
    • 1
  • P. B. Macedo
    • 1
  1. 1.Vitreous State LaboratoryThe Catholic University of AmericaUSA

Personalised recommendations