Theory of Multiphonon Absorption in the Transparent Regime of Amorphous Solids

  • Yet-Ful Tsay
  • Bernard Bendow
  • Stanford P. Yukon
Part of the Optical Physics and Engineering book series (OPEG)


We predict the multiphonon absorption α in amorphous solids, utilizing the statistical theory of Mitra et al, which relates optical properties of amorphous solids to variations in their local density. We find that if the ratio η of the mean density of an amorphous solid to that of its crystalline counterpart is greater than unity, then α decreases more slowly in the amorphous solid; if η<l, then either an increase or decrease is possible, depending on the width of the density distribution function. As an application of the method, we perform calculations for III–V semiconductors, utilizing an exactly soluble single-particle model which accounts for both anharmonicity and nonlinear moments. Analysis of their fundamental lattice resonance demonstrates that η<1 for these solids. Broadening of α and suppression of the temperature dependence is predicted to occur to varying extents for the III-V’s investigated. This suggests that various amorphous solids may not be as attractive as their crystalline counterparts for infrared applications requiring high transparency.


Local Density Amorphous Solid Density Distribution Function Amorphous Semiconductor Gruneisen Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Bendow, J. Elec. Mats. 3, 101 (1974).ADSCrossRefGoogle Scholar
  2. 2.
    Some theory papers: B. Bndow, S. C. Ying and S. P. Yukon, Phys. Rev. B8, 1679 (1973)ADSCrossRefGoogle Scholar
  3. D. L. Mills and A. A. Maradudin, ibid. 1617 (1973)Google Scholar
  4. M. Sparks and L. J. Sham, ibid. 3037 (1973)Google Scholar
  5. K. V. Namjoshi and S. S. Mitra, Phys. Rev. B9, 815 (1974)ADSCrossRefGoogle Scholar
  6. H. B. Rosenstock, ibid. 1973 (1974)Google Scholar
  7. T. C. McGill, R. W. Hellwarth, M. Mangir and H. V. Winston, J. Phys. Chem. Sol. 34, 2105 (1973).ADSCrossRefGoogle Scholar
  8. Some experimental papers: T. F. Deutsch, J. Phys. Chem. Sol. 34, 2091 (1973)ADSCrossRefGoogle Scholar
  9. J. A. Harrington and M. Hass, Phys. Rev. Lett. 31, 710 (1973)ADSCrossRefGoogle Scholar
  10. L. H. Skolnik, H. G. Lipson and B. Bendow, Appl. Phys. Lett. 25, 442 (1974)ADSCrossRefGoogle Scholar
  11. K. V. Namjoshi, S. S. Mitra, B. Bendow, J. A. Harrington and D. L. Stierwalt, ibid. 26, 41 (1975).ADSGoogle Scholar
  12. 3.
    Proceedings 3rd Conf. on IR Laser Windows“, C. A. Pitha et al, eds. (AFCRL, Bedford, MA 1974 ).Google Scholar
  13. 4.
    S. S. Mitra, D. K. Paul, Y. F. Tsay and B. Bendow, in “Tetrahedrally Bonded Amorphous Semiconductors”, M. H. Brodsky et al, eds. (APS, NY, 1974), and to be published.Google Scholar
  14. 5.
    See, for example, D. L. Mills and A. A. Maradudin, and T. C. McGill et al, op cit, Ref. 2; also, B. Bendow and S. P. Yukon, this volume.Google Scholar
  15. 6.
    See, for example, H. B. Rosenstock, op cit, Ref. 2, and L. L. Boyer et al, this volume.Google Scholar
  16. 7.
    B. Bendow, S. P. Yukon and S. C. Ying, Phys. Rev. B10, 2286 (1974).ADSCrossRefGoogle Scholar
  17. 8.
    Tetrahedrally Bonded Amorphous Semiconductors“, op cit, Ref. 4.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Yet-Ful Tsay
    • 1
  • Bernard Bendow
    • 1
  • Stanford P. Yukon
    • 2
    • 3
  1. 1.Solid State Sciences LaboratoryAir Force Cambridge Research Laboratories (AFSC)Hanscom AFBUSA
  2. 2.Parke Mathematical Labs.CarlisleUSA
  3. 3.Dept. of PhysicsBrandeis UniversityWalthamUSA

Personalised recommendations