Dispersion of the Elasto-Optic Constants of Potassium Halides

  • K. Vedam
  • E. D. D. Schmidt
  • W. C. Schneider
Part of the Optical Physics and Engineering book series (OPEG)


The variation of the refractive indices of potassium halides with pressure to 14 kbars have been determined by an interferometric method. In every case the refractive index was found to increase with pressure with a pronounced non-linearity. However, the same data exhibit perfect linear relationship with strain when the latter is evaluated using the non-linear theory of elasticity. Combining these results with the data using uniaxial pressure measurements, the individual elasto-optic constants have been determined. The observed dispersion of the elasto-optic coefficients in the spectral region 366 – 589 nm, is attributed mainly to the electronic contribution to the elasto-optic effect.


Volume Strain Isothermal Pressure High Power Laser System Potassium Halide Perfect Linear Relationship 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Pockels, Ann. Phys. Chem. 37(4), 144, 269, 372 (1889).ADSGoogle Scholar
  2. 2.
    Second and Third Conferences on High Power Infrared Laser Window Materials, ed. by C. A. Pitha, et al. (1973): AFCRLTR-73–0372 and AFCRL-TR-74–0085, respectively; and Proceedings of the 1972 Electronic Materials Conference, February and May issues of J. Elect. Matls. (1973).Google Scholar
  3. 3.
    B. Bendow, P. D. Gianino, Y. Tsay and S. S. Mitra, Appl. Opt. 13, 2382 (1974);ADSCrossRefGoogle Scholar
  4. B. Bendow, P. D. Gianino, Y. Tsay and S. S. Mitra, Tech. Rept. No. AFCRL-TR-74–0533 dated October 24 (1974).Google Scholar
  5. 4.
    K. S. Iyengar, Nature (London) 176, 1119 (1955).ADSCrossRefGoogle Scholar
  6. 5.
    K. Vedam and E. D. D. Schmidt, Phys. Rev. 146, 548 (1966).ADSCrossRefGoogle Scholar
  7. 6.
    K. Vedam, E. D. D. Schmidt, J. L. Kirk and W. C. Schneider, Mat. Res. Bull. 4, 573 (1969).CrossRefGoogle Scholar
  8. 7.
    F. D. Murnaghan, Finite Deformation of an Elastic Solid. John Wiley & Sons, Inc., New York (1951).Google Scholar
  9. 8.
    F. Birch, Phys. Rev. 71, 809 (1947).ADSMATHCrossRefGoogle Scholar
  10. 9.
    S. Bhagavantam and E. V. Chelam, Proc. Ind. Acad. Sci. 52A, 1 (1960).MathSciNetMATHGoogle Scholar
  11. 10.
    A. A. Nran’yan, Sov. Phys. Solid State 6, 936 (1964).MathSciNetGoogle Scholar
  12. 11.
    K. Brugger, Phys. Rev. 133A, 1611 (1964).ADSCrossRefGoogle Scholar
  13. 12.
    G. R. Barsch, Phys. Stat. Sol. 19, 129 (1967).ADSCrossRefGoogle Scholar
  14. 13.
    P. W. Bridgman, “The Physics of High Pressure”. G. Bell and Sons, Ltd., London (1958).Google Scholar
  15. 14.
    W. C. Overton, Jr., J. Chem. Phys. 37, 117 (1962).ADSGoogle Scholar
  16. 15.
    G. R. Barsch and Z. P. Chang, Phys. Stat. Sol. 19, 139 (1967).ADSCrossRefGoogle Scholar
  17. 16.
    E. A. Kraut and G. C. Kennedy, Phys. Rev. 151, 668 (1966).ADSCrossRefGoogle Scholar
  18. 17.
    K. Vedam and T. A. Davis, Phys. Rev. 181, 1196 (1969).ADSCrossRefGoogle Scholar
  19. 18.
    A. Gavini and M. Cardona, Phys. Rev. 177, 1351 (1969).ADSCrossRefGoogle Scholar
  20. 19.
    R. Srinivasan, Z. f. Phys. 155, 281 (1959).ADSCrossRefGoogle Scholar
  21. 20.
    H. Mueller, Phys. Rev. 47, 947 (1935).ADSMATHCrossRefGoogle Scholar
  22. 21.
    J. Yamashita and T. Kurosawa, J. Phys. Soc. Japan, 10, 610 (1955).ADSCrossRefGoogle Scholar
  23. 22.
    J. Van Vechten, Phys. Rev. 182, 891 (1969).ADSCrossRefGoogle Scholar
  24. 23.
    S. H. Wemple and M. Didominico, Phys. Rev. 1B, 193 (1970).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • K. Vedam
    • 1
  • E. D. D. Schmidt
    • 1
  • W. C. Schneider
    • 1
  1. 1.The Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations